Rapid Determination of Earthquake Magnitude using GPS for Tsunami Warning Systems: An Opportunity for IGS to Make a Difference

Geoff Blewitt, Corné Kreemer, Bill Hammond, Hans-Peter Plag
Nevada Bureau of Mines and Geology, and Seismological Laboratory, University of Nevada, Reno, NV 89557, USA,
email: kreemer@unr.edu or gblewitt@unr.edu

Seth Stein and Emile Okal
Department of Geological Sciences, Northwestern University, Evanston, IL 60208, USA
Rapid Determination of Earthquake Magnitude using GPS for Tsunami Warning Systems: An Opportunity for IGS to Make a Difference

Required Accuracy of Real-Time GPS Satellite Orbits

Geoff Blewitt, Corné Kreemer, Bill Hammond, Hans-Peter Plag
Nevada Bureau of Mines and Geology, and Seismological Laboratory, University of Nevada, Reno, NV 89557, USA,
email: kreemer@unr.edu or gblewitt@unr.edu

Seth Stein and Emile Okal
Department of Geological Sciences, Northwestern University, Evanston, IL 60208, USA
First hour is important for early warning of oceanwide tsunamis

Tsunamigenic potential directly relates to seismic moment

\[\sim (\text{fault slip}) \times (\text{rupture length}) \times (\text{rupture width}) \]

Underestimation of seismic moment for great earthquakes compromises early warning (Kerr, 2005; Menke and Levin, 2005)
Seismic Magnitude Saturation: A Major Obstacle to Early Warnings

- Early seismic magnitudes saturate at 8–8.3 (Geller, 1976)
 - but oceanwide tsunamis typically require $M_w > 8.5$
- Can the static moment be estimated early using GPS?
New Concept: GPS Displacement Method

- **Before Earthquake**
 - Plates are locked as stress builds up
 - GPS station located on the overriding plate

- **During Earthquake**
 - Plates slip by meters
 - Vertical motion of ocean floor causes tsunami
 - GPS station displaced
 - Invert GPS data for earthquake slip model
 - Input to tsunami model
2004 Sumatra Earthquake Displacements

- **Post-event estimation of displacement field**
 - global deformation!
 - > 10 mm as far as India
- **Daily position t-series**
 - 1-mm precision
 - Invert for magnitude and slip distribution
 - Provides ground truth to assess accuracy of rapid estimates
- Compare displacements
- Compare inverted models
Broader Research Questions

• Can the static moment be estimated early using GPS?

• How well can we invert for the earthquake model?

• Which GPS data processing strategies work?

• How important are accurate real-time orbits?

• How important are nearby stations?

• What is required to do all this in real time?

• How can this be used for tsunami warning?
GPS Data Processing Strategy

• Analysis simulates a real-time situation
 – only use information that can be available in real time
 – 24 hours of 30-sec data up until 20 minutes after origin time

• Estimated Parameters
 – GPS satellite and station clocks (= double differencing)
 – Station positions
 • every 30 sec if < 3,500 km from source
 • as constant if > 3,500 km from source
 – Earth's pole position and rate of rotation
 – Tropospheric zenith delay and gradients (random walk)
 – Multipath mitigated using position-based sidereal filter

• Various Orbit Strategies Compared
 – Broadcast / IGS Ultra Rapid Orbits / Custom Estimation
The Need for Accurate Orbits:
30-sec Time Series using Broadcast Orbits
The Need for Accurate Orbits: 30-sec Time Series using IGS Ultra-Rapids
The Need for Accurate Orbits: 30-sec Time Series using Estimated Orbits
Results

• Using estimated orbits
• Rapid displacement
 – Data confirm that it arrives mostly with body waves
 – Can be resolved using 15-minutes after the quake
 – Accuracy ~ 7 mm
• Can be used to estimate earthquake slip model
 – Model displacements ~ 3 mm
• And keep in mind…
 – Network was far from optimal
Rapid Displacement Field
Rapid Moment Magnitude Estimation

- Best fit models: $M_w = 8.9 - 9.1$
 - rupture = 1000 km
- Blue
 - using all sites
- Green
 - no SAMP (300 km)
- Red
 - no SAMP (300 km)
 - no NTUS (900 km)
Estimated Orbits vs IGS Ultra-Rapid Orbits

Estimated Orbits (distorted to equalize scales)

IGS Ultra Rapid Orbits
False Alarm Analysis

- Estimate apparent offsets in the noise for no real earthquake
- “Min – Best – Max”
 95% confidence interval
- Except for earthquake:
 - All Max \(\leq M_w 8.5 \)
 - All Best \(\leq M_w 7.75 \)
- “Best” has no false alarms and correctly identifies \(M_w \) in tsunamigenic range
Conclusions

- Magnitude M_w can be estimated using 15 min GPS data
 - Inversion gives modeled displacement field
 - Hence vertical displacement of the ocean

- Suggests GPS can initialize real-time tsunami models
 - GPS \rightarrow earthquake model \rightarrow tsunami model \rightarrow far field waves

- GPS orbit accuracy is crucial (for such great quakes)
 - Demonstrated to work using real-time estimated orbits

- Opportunities
 - IGS initiative toward real-time data and (eventually) orbits
 - NASA/JPL operational system - real-time orbits and positions
 - NOAA/PMEL next-generation real-time tsunami models driven by earthquake slip models - a “plug-in” interface
 - NSF/PBO GPS in Cascadia/Alaska - upgrade to real-time?