

Overview of Active Fault Research at Geological Survey of Japan

Yasuo. AWATA and Toshikazu. YOSHIOKA

Active Fault Research Center, Geological Survey of Japan, AIST

UJNR, November 10, 2006, Tokushima

1

Main Subjects on Active Fault Research

Paleoseismological investigation
 Segmentation and scaling relations
 Prediction of earthquake magnitude

Paleoseismological Investigation

Active Fault Research Project in Japan, 1st Stage

1995 to 2004 FY

Active Fault Research Project in Japan, 1st Stage

1995 to 2004 FY 98 Active fault regions Investigated mainly by local govern. and GSJ Evaluated by ERC, HERP

Probabilistic Shaking Map for Coming 30 Years (ERC, 2005)

Active Fault Research Project in Japan, 2nd Stage

Paleoseismicty of an Active Fault, Which Triggered during the 2004 Mid-Niigata Earthq.

Triggered surface rupture, with a slip of 0.2 m

Characteristic two faulting events each with a slip > 1.5 m

Prediction of "Most-Likely Earthquake-Segment" by ERC

□ 5-km-thresould (Matsuda, 1990)

- □ Scaling relation between total rupture length and slip
- □ 145 :Most likely earthquake segments
- □ 12 :further segmented based on paloseismicity alone

Fault Segmentation and New Scaling Relations

Behavioral Segment & Earthquake Segment

Estimate the extent of behavior segment ?
 Probabilistic prediction of earthquake segment ?

Segmentation of 15 Surface Ruptures in Japan

- Paleoseismicity, Rupture process, Geometry
- Segment length <= 35 km</p>
- \Box Jog and Gap >= 2 km

Scaling Relation : for Behavioral Segments

13 segments / in 6 ruptures

Japan (strike-slip)

Scaling Relation : for Behavioral Segments

Scaling Relation : for Behavioral Segments

Japan (strike-slip)

World (all types) 15

Criteria for Behavioral Segment

 □ Geometry :Jog & Gap >= 2 km :Bend >=20 deg.
 □ Paleoseismicity :Timing of faulting event :Recurrence interval

Behavioral Segments - Fault Length

431 behavioral segments
(Length >= 10 km)
(Slip rate >= 0.1 mm/y)

Behavioral Segments - Fault Length

Behavioral Segments - Fault Length

Fault Length v.s. Slip per Event

Dave. = $1.2 \times 10e-4 L = \sim 0.6 Dmax$

Prediction of Future Earthquake Segments

Prediction of Most Likely Earthquake Segments

□ Application of 5-km-thresould (Matsuda, 1990)

□ 431 b-segments 256 earthquake-segments

Scaling Relation : Between B- & E-Segments

Scaling Relation : Between B- & E-Segments

Scaling Relation : Between B- & E-Segments

MTL ▼

Scaling Relation : for Historical Ruptures Total Length v.s. Maximum Slip

Summary

We have been contributing to the Paleoseismological investigation.

We are working on fault segmentation and new scaling relations

We have to attack to the problems on the probabilistic prediction of future earthquakes

(geology, mechanics of earthquake & faulting)

"Active Fault Database" at AFRC Website

(<u>http://www.aist.go.jp/RIODB/activefault/</u>)

- ✓ 500 segments with fault strand map
- ✓ Parameters of faulting
- ✓ Site information on long-term slip rate and paleoseismicity

"Active Fault Database" at AFRC Website

(<u>http://www.aist.go.jp/RIODB/activefault/</u>)

Chichio Segment 🛛 🔶		
Strike	N 80 E	
Dip	45 N	
Length	52 km	Est the Kvote
Sense of Faulting	Right-lateral	2 E Star
Upthrown Side	North-side	Okayame Osaka
Slip Rate	4 m/ky	183-01 183-02
Slip per Event	6.9 m	lakam tsu 183-06 188-04 183-03
Recurrence Interval	1.7 ky	188-09 Tokushima Tokushima
Age of Last Faulting	AD 1500 to 1868	
	AD 1596 (documented)	OKouchi Contraction
Elapsed-time Rate	0.18	
Rupture Probability	ca. 0 % by BPT	
in Next 30 years	ca. 2 % by Poisson	NITOMELEIS

Thank You for Your Attention

2005 Kashmir Earthquake, PAK