Toward Detecting Crustal Movement in the Undersea Plate Boundary Region around Japan

Hydrographic and Oceanographic Department, Japan Coast Guard

(Presentation by Masayuki Fujita)

Distribution of Epicenters around Japan

Plates Configuration around Japan

Multiple plates are adjacent to each other.

Crustal Movement on Land

(From Report of the coordinating Committee for Earthquake Prediction)

Crustal Movement on Land

(From Report of the coordinating Committee for Earthquake Prediction)

Modified from Argus and Lyzenga (1993)

Seafloor Geodetic Measurement

Collaboration between

Japan Coast Guard and The University of Tokyo

Kinematic GPS

To determine the position of GPS antenna from the reference points on land

Kinematic GPS

To determine the position of GPS antenna from the reference points on land

Acoustic Ranging

To measure the travel time between the transducer and the seafloor transponder

Kinematic GPS

To determine the position of GPS antenna from the reference points on land

Acoustic Ranging

To measure the travel time between the transducer and the seafloor transponder

Observation System

Installation of Transponder onto the Seafloor

Transponder to be on the Seafloor-

GPS antenna

Motion Sensor
Transducer

Equipment on the Vessel

Acoustic Signal Measurement

Acoustic Velocity Structure in the Seawater

(from the CTD data)

Acoustic Velocity Structure in the Seawater

1520

(from the CTD data)

About 1.5km/s

Variation due to time and space

Error by 0.01% (15cm/s)

→ 20cm range error at the depth of 2000m

Distribution of Seafloor Reference Points

Landward slope of the Major trench

About 100km interval

The depth of about 400 - 2400m

Survey Vessel

Observation Line

Plan

To evade noises from the vessel, an observation is carried out by drifting.

Observation Line

Example

To evade noises from the vessel, an observation is carried out by drifting.

Result of Positioning

(Near Miyake Is. with depths of about 400 m)

Seafloor geodetic measurement of cm level is within reach.

Seafloor geodetic measurement of cm level is within reach.

But

Seafloor geodetic measurement of cm level is within reach.

But

Stability problems exist.

Key Problem

Stability on Long range kinematic
 GPS

Key Problem

Stability on Long range kinematic
 GPS

cm level for the baseline < 10km

Key Problem

Stability on Long range kinematic
 GPS

cm level for the baseline < 10km

> 100 km

The methodology has been developed, but still unstable.

Stability on KGPS

Temporal variation in Height Determination

after

- Tide correction
 - by Nao.99Jb
- Geoidal Height correction
 - by Fukuda (1990)

Good Example

Stability on KGPS

Temporal variation in Height Determination

after

- Tide correction
 - by Nao.99Jb
- Geoidal Height correction
 - by Fukuda (1990)

Good Example

Bad Example

Stability on KGPS

Temporal variation in Height Determination

after

- Tide correction
 - by Nao.99Jb
- Geoidal Height correction
 - by Fukuda (1990)

Other Problems

- Error in the acoustic velocity structure
 - Limitation in the observation
 - Correction method
- Deformation (bending) of the observation pole
 - → Improvement on the material and structure

Other Problems (2)

- Stormy weather
 - Uncontrollable observation plan
 - Degraded quality of the data
- Drifting observation
 - Uncontrollable configuration of lines
 - Case of no flow

Denser network

Denser network

Denser network

End of Presentation

