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◆ Expected life-cycle cost is formulated as follows.
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Conclusions (Case study)
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◆ Installation of oil dampers is effective in reducing

expected life-cycle cost in the KKE building.



Conclusions (Case study)

15/17

◆ Installation of oil dampers is effective in reducing

expected life-cycle cost in the KKE building.

◇ The appropriate initial investment is cost-effective,

in particular, in seismically active region.
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（HERP, 2001）

40% (M = 8.4)

50% (M = 8.1)

Application to seismically active regions
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