UJNR 4th Meeting November 6-8, 2002 at Metropolitan Morioka New Wing, Morioka, Japan

Seismic Risk Management of a Structure Fully Utilizing Recent Seismological Knowledge

Yuji TAKAHASHI:Building Research Institute, JAPANArmen DER KIUREGHIAN:UC Berkeley, USAAlfredo H-S. ANG:UC Irvine, USA

1. Seismic risk management

2. Formulation of life-cycle cost

3.

4.

5.

1. Seismic risk management

2. Formulation of life-cycle cost

3. Application to a building in Tokyo

4.

5.

1. Seismic risk management

2. Formulation of life-cycle cost

3. Application to a building in Tokyo

4. Conclusions

5.

1. Seismic risk management

2. Formulation of life-cycle cost

3. Application to a building in Tokyo

4. Conclusions

5. Current study

Seismic risk management

Seismic risk management

Seismic risk management

magnitude – annual rate

 $E\left[C_{D}(m_{j})\right]$

3/17

 $v(m_j) \cdot E\left[C_D(m_j)\right]$

3/17

magnitude – annual rate

K $\sum v(m_j) \cdot E \Big[C_D(m_j) \Big]$ j=1

3/17

Expected damage cost

 $E[C_L] = C_I + \Delta T \underset{all \ sources}{\sum} \sum_{j=1}^{K} v(m_j) \cdot E[C_D(m_j)]$

Expected damage cost

 $E[C_L] = C_I + \Delta T \times \sum_{all \text{ sources}} \sum_{j=1}^K v(m_j) \cdot E[C_D(m_j)] ?$

Seismological model

Finite-fault stochastic Green's function method

Seismological model

Finite-fault stochastic Green's function method

Application to a building in Tokyo

Kozo Keikaku Engineering

Application to a building in Tokyo

Kozo Keikaku Engineering

Application to a building in Tokyo

Kozo Keikaku Engineering

Decision making between two alternatives

0km		100km		

0km			100km			

0km		100km			

0km			100km			

$$E[C_L] = C_I + \Delta T \underset{all \ sources}{\sum} \sum_{j=1}^{K} v(m_j) \cdot E[C_D(m_j)]$$

$$E[C_L] = C_I + \Delta T \underset{all \ sources}{\sum} \sum_{j=1}^{K} v(m_j) \cdot E[C_D(m_j)]$$

Generalization for non-Poisson renewal model

 $E[C_L] = C_I + \Delta T \times \sum_{all \ sources} \sum_{j=1}^K v(m_j) \cdot E[C_D(m_j)]$

Generalization for non-Poisson renewal model

$$E[C_L] = C_I + \Delta T \times \sum_{all \ sources} \sum_{j=1}^K v(m_j) \cdot E[C_D(m_j)]$$

+ Non-Poisson renewal model, e.g., BPT model

Generalization for non-Poisson renewal model

$$E[C_L] = C_I + \Delta T \times \sum_{all \ sources} \sum_{j=1}^{K} v(m_j) \cdot E[C_D(m_j)]$$

+ Non-Poisson renewal model, e.g., BPT model

$$E[C_{L}] = C_{I} + \sum_{all \ sources} \sum_{j=1}^{K} E[C_{D}(m_{j})] \int_{t_{0}}^{t_{0}+\Delta T} \sum_{n=1}^{\infty} f_{T_{nth}}(m_{j},t|T>t_{0}) dt$$

PDF of waiting time to the next earthquake

PDF of waiting time to the next earthquake

Lifetime vs. expected LCC (BPT model: $t_0 = A.D.1999$)

Lifetime vs. expected LCC (BPT model: *t*₀ = A.D.1999)

Lifetime vs. expected LCC (BPT model: $t_0 = A.D.2075$)

Lifetime vs. expected LCC (BPT model: $t_0 = A.D.2075$)

Conclusions (Basic formulation)

Expected life-cycle cost is formulated as follows.

$$E[C_{L}] = C_{I} + \sum_{all \ sources} \sum_{j=1}^{K} E[C_{D}(m_{j})] \int_{t_{0}}^{t_{0}+\Delta T} \sum_{n=1}^{\infty} f_{T_{nth}}(m_{j}, t | T > t_{0}) dt$$

Conclusions (Basic formulation)

Expected life-cycle cost is formulated as follows.

Conclusions (Basic formulation)

Expected life-cycle cost is formulated as follows.

Conclusions (Case study)

Installation of oil dampers is effective in reducing expected life-cycle cost in the KKE building.

Conclusions (Case study)

Installation of oil dampers is effective in reducing expected life-cycle cost in the KKE building.

The appropriate initial investment is cost-effective, in particular, in seismically active region.

Current study

Application to seismically active regions

Details in UCB/SEMM Report

Yuji TAKAHASHI, Dr.Eng.

Building Research Institute

takahasi@kenken.go.jp

