UJNR Earthquake Research Panel Meeting Morioka, Japan 6-8 November 2002

Rheological Stratification of the Active Continental Lithosphere: Constraints from Space Geodesy

Wayne Thatcher U.S. Geological Survey, Menlo Park, California

<u>Acknowledgments</u>: Fred Pollitz, Chuck Wicks, Takuya Nishimura Georg Kaufmann & Falk Amelung, Tony Lowry

OUTLINE

Review : Rheology of the Continental Lithosphere

- Conventional view (e. g. Goetz & Evans, 1979; Brace & Kohlstedt, 1980)
- Suggested refinements

Post-Seismic Transient Deformation

- <u>Western USA--1959 M=7.3 Hegben Lake eq (Nishimura & Thatcher, 2002)</u>
- <u>Western USA</u>--1999 M=7.1 Hector Mine earthquake (Discussed by Dr. Pollitz)
- <u>Intraplate Japan--1896 M=7.5 Riku-u earthquake</u> (Thatcher et al., 1980)

Transient Deformation due to Surface Loading/Unloading

- Isostatic rebound of Lake Bonneville, Utah (e.g. Bills et al., 1994)
- Reservoir loading of Lake Mead, Nevada (Kaufmann & Amelung, 2000)

Comparisons with Effective Elastic Thickness from Gravity/Topo (Lowry et al., 2000)

✤Summary

• Implications, questions, future work

Review: Rheology of Active Continental Lithosphere

After Brace & Kohlstedt (1980)

Brittle-elastic upper crust, where earthquake faulting occurs
 Weak, ductile lower crust (for quartz, feldspar composition!)
 Stronger upper mantle lithosphere (~olivine composition)
 SUGGESTED REVISIONS REPORTED HERE

• Lower crust is strong and ~elastic for time scales up to ~10 ka

• Upper mantle lithosphere is ductile and weaker than the crust

Alternative Mechanisms of Post Earthquake Deformation

MODEL 1 ELASTIC PLATE & VISCOELASTIC RELAXATION

MODEL 2 DEEP FAULT AFTERSLIP IN ELASTIC MEDIUM

➢ VISCOELASTIC RELAXATION

- Elastic plate coupled to ductile underlying layer
- Earthquake or loading/unloading stresses relax by ductile flow
- Elastic plate thickness determines scale of surface deformation
- Effective viscosity determines time dependence

➢ DEEP ASEISMIC AFTERSLIP

- On down-dip extension of earthquake fault plane
- Fault geometry and depth determine scale of surface motions
- Aseismic fault slip history determines time dependence

1959 M=7.3 Hegben Lake Earthquake

Normal faulting earthquake

≫ 30 km surface faulting

✤ Maximum 6 m slip

➢ 2-fault model (red boxes)

Post-seismic leveling 1959-1987 (green lines)

Constrains relaxation process
 Viscoelastic mantle required

Hegben Earthquake Postseismic Leveling Favors Viscoelastic Relaxation Mechanism

Observed displacements show uplift

Viscoelastic relaxation model predicts uplift, fits observed pattern

Deep aseismic fault slip model predicts subsidence

Best Fit Viscoelastic Model for Hegben Lake Postseismic Data

Nishimura & Thatcher 2002

➢ Upper mantle viscosity η_a = 10^{−18±0.5} Pa-s

rightarrow Elastic plate thickness $h_p = 38 \pm 8 \text{ km}$

Lower crustal viscosity must be > 10²⁰ Pa-s

Post-Seismic Deformation from 1999 M=7.1 Hector Mine, California, Earthquake

 Excellent earthquake for postseismic deformation imaging

- Good campaign and continuous
 GPS network coverage
- Good InSAR images of postseismic deformation in ~year following earthquake
- Well-constrained coseismic fault slip model (GPS & InSAR)
- Unique constraints on mechanism
 of post-seismic relaxation

Already discussed by Dr. Pollitz

Post-Seismic Deformation from 1896 M=7.5 Riku-u, N. Honshu, Japan Earthquake

- Intra-plate thrust faulting event
- Surface faulting ~40 km, with
 ~4m offsets on Senya fault
- Leveling network established in 1900 across epicentral zone
- Remarkable transient deformation centered on 1896 fault
- Requires viscoelastic relaxation mechanism to explain

Thatcher, Matsuda, Kato & Rundle (1980)

1900-1975 Level Changes Following 1896 M=7.5 Riku-u, N. Honshu, Japan Earthquake

Localized subsidence ~35 cm
 located near 1896 surface rupture

 Unrelated Pacific coast subsidence due to Pacific plate subduction at Japan Trench

Observed versus Model-Predicted Vertical Displacements

Thatcher, Matsuda, Kato & Rundle (1980)

- ➢ Good agreement near 1896 fault
- Mismatch near Pacific coast due to Pacific plate subduction at Japan Trench
- Spatial pattern requires elastic crust 30 km thick
- Time decay of deformation (see next graph) requires effective viscosity of upper mantle to be 1 x 10¹⁹ Pa-s

Observed versus Model-Predicted Vertical Displacement Time History at 1896 Fault

Thatcher, Matsuda, Kato & Rundle (1980)

Time decay of deformation requires viscoelastic model relaxation time of 20 years and effective viscosity of upper mantle to be 1 x 10¹⁹ Pa-s

Isostatic Rebound of Lake Bonneville Utah, Western USA

Sudden draining of pluvial lake ~12,000 & 14,000 yrs BP

Uplifted shorelines record rebound of lithosphere

Models (many studies) require:

- Elastic crust ~30 km thick
- Upper mantle viscosity 1-3 x 10¹⁹ Pa-s
 - (or as low as 2 x 10¹⁸ Pa-s if thin low viscosity layer)

Time-Dependent Subsidence Due to Filling of Lake Mead, Nevada, in 1934

Loading of 635 km² by reservoir up to 220 m deep

Leveling in 1935, 1941, 1950 & 1963

 Spatial pattern & time dependence of the deformation constrain lithosphere rheology

Modeling Subsidence Due to Filling of Lake Mead

Kaufmann & Amelung, (2000)

 \approx Elastic layer ~ crustal thickness 28 ± 3 km

✤ Upper mantle viscosity ~1.5 x 10¹⁸ Pa-s

Lithospheric Viscosity Profiles from Modeling Loading/Unloading Deformation in Western USA

Strong ~elastic crust (lower crust *might* be slightly weaker, η > 10²⁰ Pa-s)

Upper mantle viscosity range 10¹⁸ - 10¹⁹ Pa-s

Western US Elastic Lithosphere Thickness from Gravity-Topography Correlation

122'W 120'W 118'W 116'W 114'W 112'W 110'W 108'W 106'W

➢ In active western USA $T_e \sim 5 - 15 \text{ km}$

Generally T_e factor of 2 - 4 thinner than 'geodetic' estimates

- Hegben: 9 km vs 40 km
- Mojave: 15 km vs 30 km
- Bonneville: 7 km vs 30 km
- Lake Mead: 15 km vs 30 km

- Lower crustal stress relaxation for time scales > ~10 ka?
- Transient rheology different?
- Acknowledged & unacknowledged errors in both methods?

Implications, Issues & Questions

Strength of Lower Crust

- Post-seismic results suggest strong ~elastic crust to Moho depths (~30 km)
- Consistent with isostatic rebound of Lake Bonneville & Lake Mead loading
- No 'jelly sandwich' rheological layering in Western USA at present?
- Long term lower crustal stress relaxation?

Does Lower Crustal Flow Occur Only in Very Hot Crust?

- Metamorphic core complexes pre-heated by magmatism?
- Overthickened orogens (Tibet, Andes) with hot lower crust at ~30-70 km depth?

> Is Upper Mantle Weak in Tectonic Regions? Why?

• Role of water in weakening mantle lithosphere?

& Likely Complexities & Unresolved Issues

- Role of lower crust is unknown--slow ductile flow or narrow shear zone?
- Are there lateral rheology variations near active fault zones?
- Regional variations in rheology? (Is San Andreas different from Mojave faults?)

New Research Directions

- More case histories of post-seismic relaxation worldwide
- Assess importance of other time-dependent relaxation processes

Western US Synthetic GPS Velocity Field in 2002 Due to Relaxation from 1954, 1959 & 1983 Earthquakes

Assume Hegben Lake Relaxation Model

 Calculate 2002 postseismic transient velocity due to:

- 1954 Dixie Valley, Nevada M=7.3
- 1958 Hegben Lake, Montana M=7.3
- 1983 Borah Peak, Idaho M=7.1

Expected effects are measurable with high precision GPS

How EarthScope Will Contribute to Better Constraints on Crust-Upper Mantle Rheology

- More high resolution case histories of post-seismic transient deformation
- Long-term (>decade) stress relaxation from large (M>7) western US earthquakes from PBO continuous GPS networks
- Seismology--can connect crust/upper mantle structure to lithospheric rheology estimates with USArray
- InSAR will give 24-day snapshots of postseismic deformation worldwide
- Better understanding of post-seismic stress transfer process