10-1 九州地方とその周辺の地震活動(2019年5月~10月) Seismic Activity in and around the Kyushu District (May - October 2019)

気象庁 福岡管区気象台 Fukuoka Regional Headquarters, JMA

今期間,九州地方とその周辺で M4.0 以上の地震は 40 回, M5.0 以上の地震は 7 回発生した. こ のうち最大のものは,2019 年 5 月 10 日に日向灘で発生した M6.3 の地震である.

2019 年 5 月~10 月の M4.0 以上の地震の震央分布を第 1 図 (a) 及び (b) に示す. 主な地震活動は以下のとおりである.

(1) 日向灘の地震(最大 M6.3,最大震度 5 弱,第 2 図 (a) ~ (g))

2019年5月10日07時43分に日向灘の深さ25kmでM5.6の地震(最大震度3)が発生した.また, 同日08時48分にほぼ同じ場所でM6.3の地震(最大震度5弱)が発生した.これらの地震は,発 震機構(CMT解)が西北西-東南東方向に圧力軸を持つ逆断層型で,フィリピン海プレートと陸 のプレートの境界で発生した. Double-Difference法¹⁾による詳細な震源分布から,これらの地震は, 一元化震源と比較して北西の浅い場所で発生し,その後の地震活動域は北西方向に拡がっていった. また,これらの地震は,1996年10月19日に発生したM6.9の地震のすべり分布で一番大きなすべ り域の周囲で発生していた.

(2) 日向灘の地震(M5.0, 最大震度 4, 第 3 図)

2019 年 5 月 11 日 08 時 59 分に日向灘の深さ 36 km で M5.0 の地震(最大震度 4) が発生した. この地震は,発震機構(CMT 解)が東西方向に張力軸を持つ正断層型で,フィリピン海プレート 内部で発生した.

(3) 奄美大島北東沖の地震(M5.7, 最大震度 3, 第 4 図 (a) ~ (c))

2019年5月15日14時24分に奄美大島北東沖でM5.7の地震(最大震度3)が発生した.この 地震の発震機構(CMT解)は西北西-東南東方向に圧力軸を持つ逆断層型である.また,強震波 形による相関解析を行った結果,この地震は2006年12月11日の地震(M5.7,最大震度3)とと もに新たな相似地震グループとして検出された.

(4) 奄美大島北西沖の地震(M6.0, 最大震度 3, 第5図)

2019 年 7 月 13 日 09 時 57 分に奄美大島北西沖の深さ 256 km で M6.0 の地震(最大震度 3)が発生した. この地震はフィリピン海プレート内部で発生した.発震機構(CMT 解)はフィリピン海プレートの沈み込む方向に圧力軸を持つ型である.

参考文献

1) Waldhauser, F. and W. L. Ellsworth : A Double-Difference Earthquake Location Algorithm: Method and Application to the Northern Hayward Fault, California, Bull. Seism. Soc. AM., 90, 1353-1368 (2000).

図中の吹き出しは、陸域M4.0以上・海域M5.0以上

図中の吹き出しは、陸域M4.0以上・海域M5.0以上

- 第1図(a) 九州地方とその周辺の地震活動(2019年5月~7月, M ≥ 4.0, 深 さ≤700 km)
- Fig. 1(a) Seismic activity in and around the Kyushu district (May July 2019, M \ge 4.0, depth \le 700 km).

第1図(b) つづき (2019年8月~10月, M \ge 4.0, 深さ \le 700 km) Fig. 1(b) Continued (August – October 2019, M \ge 4.0, depth \le 700 km).

5月10日 震央分布図 (1994年10月1日~2019年5月31日 深さO~100km、M≧2.0) 2019年5月の地震を濃く表示 図中の発震機構は CMT 解 N=11597 <u>د</u> ک

07時43分 M5.6

今回の地震① 1996年10月19日

80

lan

50km

80

90

第2図(a) 2019年5月10日 日向灘の地震 Fig. 2(a) The earthquakes in the Hyuganada Sea on May 10, 2019.

日向灘の地震

2019年5月10日07時43分に日向灘の深さ25kmで M5.6の地震(最大震度3、今回の地震①)が発生 した。また、同日08時48分にほぼ同じ場所でM6.3 の地震(最大震度5弱、今回の地震2)が発生し た。これらの地震は、発震機構(CMT解)が西北西 - 東南東方向に圧力軸を持つ逆断層型で、フィリ ピン海プレートと陸のプレートの境界で発生し た。この地震により、軽傷者2人の被害が生じた (5月17日現在、総務省消防庁による)。

1994年10月以降の活動をみると、今回の地震の 震源付近(領域b)ではM5.0以上の地震が時々発 生している。1996年10月19日に今回の地震とほぼ 同じ場所で発生したM6.9の地震(最大震度5弱) では、高知県の室戸岬で最大27cm(最大全振幅) の津波を観測した。

1922年以降の活動をみると、今回の地震の震央 周辺(領域 c) ではM6.0以上の地震が時々発生し ている。1931年11月2日に発生したM7.1の地震で は、死者1人、負傷者29人などの被害が生じたほ か、高知県の室戸岬で最大85cm(最大全振幅)の 津波を観測した(被害は「日本被害地震総覧」に よる)。

DD法結果(日向灘の地震)

・2019年5月10日~5月31日の一元化震源のうち、深さ0~40km、 震源フラグKの地震(123個)について、カタログDD法を行ったの で、その結果を示す。

第2図(b) つづき Fig. 2(b) Continued.

第2図(c) つづき Fig. 2(c) Continued.

震央分布図(1996年10月19日~11月9日、M≧0.5、60km以浅)

5月10日 日向灘の地震(1996年10月の活動との比較)

5月10日 日向灘の地震(観測点限定+観測点補正による再計算)

第2図(e) つづき Fig. 2(e) Continued.

地震予知連絡会会報第103巻

2020年3月

|発行

1500

1000

500

第2図(f) つづき Fig. 2(f) Continued.

5月10日 日向灘の地震(周辺の過去の被害地震)

震央分布図(1600年1月1日~2019年5月31日、M≧6.5、90km以浅)

466年~1884年は日本被害地震総覧、1885年~1921年は茅野・宇津(2001)

矩形領域内の主な地震の被害状況等

発生年月日	М	被害等	長期評価
1662年10月31日	7.6	日向灘沿岸に被害。家屋の損壊多く、死者あり。山崩れ、津	日向灘のプレート間地震
	$(7 \cdot 1/2 \sim 3/4)$	波を生じ、宮崎県沿岸で陥没して海となった。	
1899年11月25日	7.1	宮崎・大分で家屋小破、土蔵倒潰。12分後にも北側でM6.9が	
		あり、大分では2回目の方が強かった。	
1913年4月13日	6.8	宮崎市で壁の亀裂など小被害。	
1929年5月22日	6.9	宮崎市で煉瓦煙突倒壊多数、土壁や屋根の破損など。	
1931年11月2日	7.1	宮崎県で家屋全壊4、死者1、鹿児島県で家屋全壊1。室戸で	日向灘のひとまわり小さい
		津波85cm。	プレート間地震
1939年3月20日	6.5	大分県沿岸で小被害、宮崎で死者1。小津波があった。	
1941年11月19日	7.2	大分・宮崎・熊本で被害があり、死者2、家屋全壊27。九州	日向灘のひとまわり小さい
		東岸・四国西岸に津波、最大波高1m。	プレート間地震
1970年7月26日	6.7	宮崎市・日南市に被害多く、負傷者13、道路損壊5、山・が	
		け崩れ4など。小津波(油津で全振幅39cm)。	
1987年3月18日	6.6	死者1、負傷者6のほか、建物・道路などに被害。	
1996年10月19日	6.9	前12時間で5回の有感前震。宮崎・大分県などで棚の物が落	
		下など。小津波(波高10cm程度)。	
1996年12月3日	6.7	11月30日に有感前震。宮崎県で棚の物が落下など。小津波	
		(波高15cm程度)。	

被害等の記述は、理科年表、日本被害地震総覧による

第2図(g) つづき Fig. 2(g) Continued. 5月11日

第3図 2019年5月11日 日向灘の地震 Fig. 3 The earthquake in the Hyuganada Sea on May 11, 2019.

日日向灘の地震

2019年5月11日08時59分に日向灘の深さ36kmで M5.0の地震(最大震度4)が発生した。この地震 は、発震機構(CMT解)が東西方向に張力軸を持つ 正断層型で、フィリピン海プレート内部で発生し た。

1994年10月以降の活動をみると、今回の地震の 震源付近(領域b)ではM5.0以上の地震が時々発 生している。近年では、2017年3月2日にM5.3の 地震(最大震度4)が発生した。

1922年以降の活動をみると、今回の地震の震央 周辺(領域 c)ではM6.0以上の地震が7回発生し ている。「1968年日向灘地震」(M7.5、最大震度5) では、負傷者57人、住家被害7,423棟などの被害が 生じた(「日本被害地震総覧」による)。また、こ の地震により大分県の蒲江で240cm(最大全振幅) の津波を観測した(「日本被害津波総覧」による)。

5月15日 奄美大島北東沖の地震

2019年5月15日14時24分に奄美大島北東沖で M5.7の地震(最大震度3)が発生した。この地震の 発震機構(CMT解)は、西北西-東南東方向に圧力 軸を持つ逆断層型である。

1997年10月以降の活動をみると、今回の地震の震 央付近(領域 a)ではM5.0以上の地震が時々発生し ている。2006年12月11日には、今回の地震とほぼ同 じ場所でM5.7の地震(最大震度 3)が発生した。

1922年以降の活動をみると、今回の地震の震央周辺(領域b)では、M6.0以上の地震が7回発生している。2009年10月30日にはM6.8の地震(最大震度4)が発生し、鹿児島県の枕崎で18cmの津波を観測した。

震央分布図 (1922年1月1日~2019年5月31日、 深さO~90km、M≧5.0)

第4図(a) 2019年5月15日 奄美大島北東沖の地震 Fig. 4(a) The earthquake northeast off Amami-oshima Island on May 15, 2019.

5月15日 奄美大島北東沖の地震(各機関のMT解)

防災科研(F-net):http://www.fnet.bosai.go.jp/event/joho.php?LANG=ja USGS(W-phase):https://earthquake.usgs.gov/earthquakes/map/ Global CMT:http://www.globalcmt.org/CMTsearch.html GEOFON MT:http://geofon.gfz-potsdam.de/eqinfo/list.php?mode=mt

防災科研(AQUA) Mw5.6, 深さ32km

http://www.hinet.bosai.go.jp/AQUA/aqua_catalogue.php?LANG=ja

第4図(b) つづき Fig. 4(b) Continued.

5月15日奄美大島北東沖の地震(相似地震)

2019年5月15日の奄美大島北東沖の地震(M5.7、最大震度3)について強震波形による相関解析を 行った結果、1観測点のみの比較ではあるが、2006年12月11日の地震(M5.7、最大震度3)とともに 新たな相似地震グループとして検出された(上図の★)*。

※ 各観測点の波形の比較で得られたコヒーレンスの中央値が0.95以上の場合、相似地震として検出している。また、相似地震のグ ループ分けはコヒーレンスを用いて機械的に行っている。

(参考文献) 溜渕功史、中村雅基、山田安之(2014):全国を対象とした客観的な相似地震の抽出,気象研究所技術報告,72,5-16

●推定年平均すべり量等

すべり量推定には、モーメントマグニチュードと地震モーメントの関係式[Hanks and Kanamori (1979)]及び地震モーメントとすべり量の関係式 [Nadeau and Johnson(1998)]を使用。得られた積算すべり量と経過時間から最小自乗法を用いてグループ毎の年平均すべり量を求めた。

●波形例

観測点名:鹿児島十島村中之島(D0A) 2006/12/11 00:28:08 M5.7 —— 2019/05/15 14:24:31 M5.7 ——

EW成分: Cohr=0.97 (0.15 - 0.63 Hz)

10 20 30 40

ŏ

Time(s)

01

変位波形は加速度記録を気象庁59型地震計相当に変換して求めたもの

10

第4図(c) つづき Fig. 4(c) Continued.

7月13日 奄美大島北西沖の地震

2019年7月13日09時57分に奄美大島北西沖の深 さ256kmでM6.0の地震(最大震度3)が発生した。 この地震はフィリピン海プレート内部で発生し た。発震機構(CMT解)は、フィリピン海プレート の沈み込む方向に圧力軸を持つ型である。

1997年10月以降の活動をみると、今回の地震の 震源付近(領域b)では、2017年8月16日にM5.7 の地震(最大震度2)が発生している。

1922年以降の活動をみると、今回の地震の震央 周辺(領域 c)では、M6.0以上の地震が5回発生 している。1981年1月3日にはM6.6の地震(最大 震度4)が発生した。

第5図 2019年7月13日 奄美大島北西沖の地震 Fig. 5 The earthquake northwest off Amami-oshima Island on July 13, 2019.

200

1.30° F

M () 7.0

6.0

5.0

1965年9月21日 M6.2

6

0

5

1998年10月3日

28°