4-3 愛知県二川における光波測量による辺長測量(1)

Distance Measuring Observed by the Optical Electro Means by the Futagawa. Base-Line Network at Futagawa, Aichi Pref..

名占屋大学理学部 Faculty of Science, Nagoya University

愛知県豊橋市二川地区において、南海トラフ方向に $3 \sim 6 \text{ km}$ の基線を 3 方向に設置した (第1図)。それぞれの方向で複数の基線を設け、1976年 12 月から、 $1 \sim 2$ ケ月の間隔で光波 測距儀 (AGA社 VIBL、63204)を用いて、光波測距を繰返した (第1表)。

この地域の主応縮軸の方向は、北西 - 南東方向であり¹⁾、今回の測量でも、北西 - 南東方向の縮みは確められた。

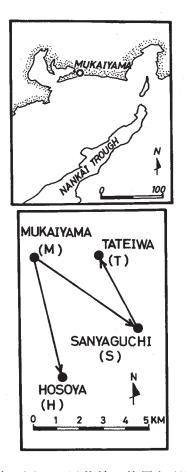
三弥口(S) - 立岩(T)の4基線,向山(M) - 三弥口(S)の2基線,向山(M) - 細谷(H)の2基線による辺長歪の変化を、それぞれの方向の平均値で第2図に示す。白丸は測量した時の気象条件が不適当と思われるときの値であり、歪の速度の計算では除外してある。

S-T, M-S, M-Hとも 76 年 12 月から 78 年 4 月の 1 年 5 ケ月間に, $(1.6-2.4)\times 10^{-6}$ /年 の割合で縮みが観測された。この縮みの速度は,国土地理院 $^{1)}$ の値とくらべ, $6\sim 7$ 倍大きな値である(しかし,御前崎精密歪測量結果 $^{2)}$ とくらべ,同じ値となる)。

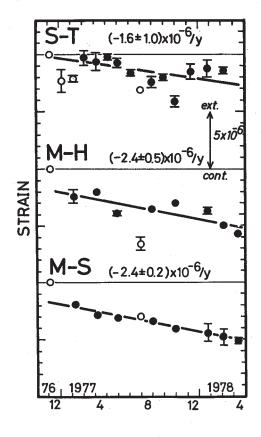
向山を基点とするM-H, M-S基線, 特にM-S基線での歪値のばらつきは小さい。それは、以下の理由によるものと考えられる。向山は平野部に孤立した山であり、またこの地域では北西の風が卓越し、M-S基線の方向と一致する。こめため、温度補正が正確であると思われる。

この測定は名古屋大学理学部付属地震予知観測センター測地移動班の調査であり、山内常生、 木股文昭が担当した。

参 考 文 献


- 1) 国土地理院:中部, 東海地方GDP高精度トラバース測量結果, 連絡会報, **11** (1974), 107-108。
- 2) 国土地理院:御前崎超精密歪測量結果,第41回予知連絡会資料。

第1表 辺長の時間的変化


Table 1 Changes in the base-line length.

Base	M		M		M		M		S	E	S	E	S	W	S	W	
Reflector	H	E	H	W	S	E .	S	W	T	E	Т	W	T	E	Т	w	
Date	Lenhth m		Length m		Length m		Length m		Ler	Length m		Length m		Length m		Length m	
Dec 6,76	5516	.719*	551	6.042*	573	2.265*			358	7.980*	359	3.094*	358	3.863*	358	8.976*	
Jan 5, 77						:				.972*		.071*		·860*		.976*	
Feb 8,77		.701		.033			572	8.027		• 968*		.087*		.854*		.972*	
Mar 10, 11, 77										.984		.096		.862		.963	
Apr 6, 13, 77		.708		.029		.247		.021		.974		.096		.850°		.982	
May 6,77										. 976		.096		859		.976	
June 1, 77		695		.020		. 243		.023		.975		.095		-856		.972	
July 8, 77										. 976		.089		.852		.969	
Aug 2, 77		.677*		.009*				.020*		.969*		.082*		.849*	-	•964*	
Sept 4, 77	gr.	697		.021		.240		.021		. 966		.083		-851		.973	
Oct 2, 77										.971		.081		-854		.971	
Nov 1, 77		699		.025		. 237		-016		.962		.080		.840		.966	
Dec 10, 77										.977		.092		. 847		.975	
Jan 25, 78		.701		.019		.233		.021		.968		.094		.853		.981	
Mar 8, 78		694		.012		.235		.015		.972		.091		-860		.970	
Apr 14, 78		688		• 009		• 236		•010									

(*); the data observed at the time of poor meteorological conditions

第1図 二川基線の位置と配置 Fig. 1 Futagawa base-line network.

第2図 二川基線網における歪量の変化

Fig. 2 Horizontal strains at Futagawa. The data observed at the time of poor meteorological conditions are indicated by open circles.

Error bar is indicated by the probable error.