6-21 3次元応力の測定と応力深度匂配の測定 --平木鉱山および土橋鉱山---

Measurements of 3 Dimensional Stress and Stress Gradient with Depth – The Hiraki Mine and The Tsuchihashi Mine

西日本地殼応力調查班

The Research Group of Crustal Stress in Western Japan

平木鉱山、土橋鉱山において第一表の通り応力測定を実施した。

- 水平面内主応力方向は、測定上問題のあるものを除くと、±8°程度のバラツキで収まり、テクトニック・ストレスをよく反映していると考えられる(第1図)。
- 2) 平木の1989年の測定は1985年の測定に対し、主応力方向が東西に近く変化したように見える。 測定点が異なるが、1987年以後活発化している京都府亀岡(第1図大谷付近)の地震活動による 応力再配分のため、東西応力増大の可能性もある(第5図)。
- 3) 土橋の鉛直ボーリングは珪化帯よりおこなったが、下方17mで粘土を含む小断層、または破砕帯に遭遇し、その下部は蠟石鉱床に入り込んだ。蠟石の塑性変形が激しく、5点で水圧破砕を行ったが測定は困難をきわめた。最下部の2点で亀裂の方位測定を行った直後、パッカーが孔変形のため閉じ込められ、捲上げ不可能となり上部2点については、亀裂の方位測定はできなかった(第2図)。しかし、応力解放4回、水圧破砕3回の結果をみると(第4図)、応力解放3回と水圧破砕3回および応力解放(10.25m)1回の結果が主応力方向で系統的に35°前後ずれて2組に分かれるのは明らかである。つまり、水圧破砕法による結果は、蠟石の塑性変形が大きく、孔が変形し、孔壁の接線応力が緩和し、水圧破砕を行った時最大せん断応力の方向に亀裂が生じた(あるいは亀裂が生じていた)ものと考えられる。そこで、最大主応力方向を応力解放によるN52°Eと仮定し、亀裂方向の応力とそれと直交する応力から最大主応力値と最小主応力値を計算した。これが補正された主応力値である(第4図内点線)。
- 4) 土橋の応力深度匂配は宝殿の応力匂配とほぼ等しい。最小主応力は西日本標準応力匂配に比べて小さく,従ってせん断応力は深部ではやや高くなっていると推定される。平木の浅部の応力値は宝殿の場合と同じくバラツキが大きいが,第6図に見られるように1989年の測定は,1978年,1985年の測定値に比べると,最小主応力値σh₂は余り変わらず,最大主応力値σh₁は増加しているように見える。第7図でも平均主応力σhと最大せん断応力τhの比μが増加している傾向が見られる。場所的な違いか,時間的変化であるかは断定できない(2)参照)。

第1表 平木,土橋における応力測定実施項目

1	3次元応力	応力深度勾配測定		
	応力解放法	小口径水圧破砕法	60 mm 径水圧破砕法	
平木鉱山	1978年12月	1989年4月	1985年9月	1989年2月
兵庫県	(8素子ゲージ法)	地表より斜下2方向、	地表下145m坑道	地表より
加東郡	地表下108m坑道	各30m、鉛直60mm併用	から鉛直100m、	鉛直100m
社町	(科研費)		(同和工営KK)	
		白亜紀後期流紋岩		
土橋鉱山 岡山県 備前市 三石	1989年3月 (16素子ゲージ法) 地表下140m坑道 白亜紀後期流紋岩質	1989年11月 小口径水圧破砕法 地表下140m坑道より 2方向、鉛直60mm併用 貨熔結凝灰岩珪化帯	1989年11月 60mm径水圧破砕法 地表下140m坑道より 鉛直60mボーリング 珪化帯下部の蠟石鉱床	

Table 1 Operation items for stress measurements at Hiraki and Tsuchihashi sites.

.

第2表 平木と土橋における3次元応力測定結果

Table 2 Results of absolute stress measurements at Hiraki (left) and Tsuchihashi (right) sites.

Stre	ss Relief Me	ethod .		Stre	ss Relief Me	thod	
	MPa	Azimuth	Dip		MPa	Azimuth	Dip
σι	4.9 ± 0.5	N 53°₩±15°	48°±10°	σ1	6.2 ± 0.6	N 49°E± 9°	11°±18°
σ2	3.1 ± 0.7	N169°W±18°	21°±20°	σ2	5.2 ± 0.4	N 65°W±34°	65°±14°
σ,	1.9 ± 0.5	N 86°E±25°	54°±10°	σ,	3.4 ± 0.6	S 36°E± 8°	22° [:] ±11°
σh	3.6 ± 0.8	N 29°W±27°		σhι	6.2 ± 0.6	N 52°E±10°	
on.	2.6 ± 0.7	N118°W±27°	•••••	σh₂	3.7 ± 0.6	N 38°W±10°	
ov.	3.7 ± 0.4			σν	5.0 ± 0.4		
Hydr	ofracturing	Method		Hyda	rofracturing	Method	
				4			
	MPa	Azimuth	Dip		MPa	Azimuth	Dip
σι	MPa 3.0 ± 0.4	Azimuth	Dip 25°± 8°	σ1	MPa 4.9 ± 0.7	Azimuth S 20°W±10°	Dip 6°±10°
σ1 σ2	MPa 3.0 ± 0.4 1.9 ± 0.4	Azimuth N 45°W±12° S 39°W±12°	Dip 25°± 8° 13°±10°	σ1 σ2	MPa 4.9 ± 0.7 2.3 ± 0.8	Azimuth S 20°W±10° N 66°W±15°	Dip 6°±10° 34°±23°
σ ₁ σ ₂	MPa 3.0 \pm 0.4 1.9 \pm 0.4 0.2 \pm 0.6	Azimuth N 45°W±12° S 39°W±12° S 76°E±16°	Dip 25°± 8° 13°±10° 61°± 9°	σ1 σ2 σ3	MPa 4.9 ± 0.7 2.3 ± 0.8 0.9 ± 0.8	Azimuth S 20°W±10° N 66°W±15° S 79°E±21°	Dip 6°±10° 34°±23° 55°±23°
σ ₁ σ ₂ σ ₃ σ _h	MPa 3.0 ± 0.4 1.9 ± 0.4 0.2 ± 0.6 2.6 ± 0.4	Azimuth N 45°W±12° S 39°W±12° S 76°E±16° N 34°W±18°	Dip 25°± 8° 13°±10° 61°± 9°	σ1 σ2 σ3 σh1	MPa 4.9 ± 0.7 2.3 ± 0.8 0.9 ± 0.8 4.9 ± 0.7	Azimuth S 20°W±10° N 66°W±15° S 79°E±21° N 18°E±11°	Dip 6°±10° 34°±23° 55°±23°
σ_1 σ_2 σ_3 σ_{h_1} σ_{h_2}	MPa 3.0 ± 0.4 1.9 ± 0.4 0.2 ± 0.6 2.6 ± 0.4 1.7 ± 0.3	Azimuth N 45°W±12° S 39°W±12° S 76°E±16° N 34°W±18° N 56°E±18°	Dip 25°± 8° 13°±10° 61°± 9°	σ1 σ2 σ3 σh1 σh2	MPa 4.9 ± 0.7 2.3 ± 0.8 0.9 ± 0.8 4.9 ± 0.7 1.9 ± 0.7	Azimuth S 20°W±10° N 66°W±15° S 79°E±21° N 18°E±11° N108°E±11°	Dip 6°±10° 34°±23° 55°±23°

第3表 平木と土橋における測定深度と水平面内主応力値

()内は主応力方向をN52°Eとして補正した結果

Table 3Principal horizontal stress values and azimuths at different depths calculated from hydrofracturing data
at Hiraki site (upper) and Tsuchihashi site (lower). The values in parenthesis are the corrected values
deduced from the principal stress direction N 52° E.

Depth(m)) σh_1 (MPa)	σh₂(MPa)	Direction of σh_1
23.3	3.8	2.0	N28.9°W
27.0	1.7	0.9	N47.5°W
29.4	4.9	0.1	N83.3°W
34.0	5.3	2.3	N43.5°E
37.3	3.7	1.4	N32.8°W
42.0	7.3	2.9	N53.8°W
45.0	9.3	3.6	N70.0°W
48.3	3.2	1.5	N33.3°W
52.5	1.5	1.0	N76.7°E
56.5	4.4	2.1	N84.5°E
60.0	7.4	3.0	N41.5°W
64.6	4.9	2.6	N34.9°W
200	5.7	2.8	N17.1°W
204	6.4	2.7	N 2.0°W
207	5.2	2.6	N 9.9°W
217	2.4	2.2	N44.1°W
223	5.5	2.5	N26.9°W
229		3.5	
234	7.1	3.5	N26.1°W
240	7.5	3.8	N 7.3°W
Depth(m)	σh _l (MPa)	σh₂(MPa)	Direction of σh_1
140	4.9(6.4)	1.9(0.4)	N18.4°E(N52°E)
151	7.2(9.0)	3.5(4.2)	(N52°E)
165	5.8(7.5)	2.5(0.8)	(N52°E)
169	4.5(5.7)	2.0(0.7)	(N52°E)
177	5.4(6.7)	2.8(1.5)	N23.9°E(N52°E)
183	6.5(8.2)	3.1(1.4)	N11.4°E(N52°E)

i

- 第1図 応力測定点及び水平面内最大主応力方向 H i :平木, T s :土橋, H o :宝殿, A :明延, I :生野, O :大谷, T :高塚山, S :城見台, R :六甲諏訪山
- Fig. 1 Location of the measuring site for crustal stress and azimuth of maximum horizontal stress in Northwest Kinki District.
 Hi: Hiraki, Ts: Tsuchihashi, Ho: Hoden, A: Akenobe, I: Ikuno, O: Otani, T: Takatsukayama, S: Shiromidai, R: Rokko-Suwayama

Fig. 2 Direction of boreholes at Hiraki (left) and Tsuchihashi (right) measuring sites.
•: hydrofracturing points.
A: stress relief points.

-401-

Fig. 3 Results of absolute stress measurements at Hiraki site. Upper: directions of principal stresses shown on stereographic net of lower hemisphere. Lower: principal axes of horizontal stress.

第4図 土橋3次元応力測定結果

主応力軸方向の下半球ステレオ投影(左端)と水平面内主応力軸 上段:応力解放による。()内は孔口よりの測定点深度 下段:水圧破砕法による。Hは地表からの測定点深度 実線は測定値,点線は主応力方位をN52°Eと仮定して,補正後の主応力値。

Fig. 4 Results of absolute stress measurements at Tsuchihashi site. Directions of principal stresses shown on stereographic net of lower hemisphere (leftmost) and principal axes of horizontal stress (right). Upper: by stress relief method, Lower: by hydrofracturing method
The values in parenthesis are the depth of the measuring point from the mouth of borehole. H is the depth of measured point from the ground surface. Solid line shows the measured values, and dotted line shows the principal stress value after correction, assuming the principal stress direction N 52° E.

第5図 平木,土橋,宝殿の各測定深度における主応力軸方向

Fig. 5 The azimuth of principal stress at each depth of measuring points of Hiraki, Tsuchihashi and Hoden.

第6図 水平面内主応力値の深度分布 左:平木,右:土橋,宝殿 点線は補正量を示す。

Fig. 6 Variation of horizontal principal stress value with depth. Left: Hiraki, Right: Tsuchihashi, Hoden. Broken line shows the correction value.

第7図 平木の測定結果による平均応力 σ h = (σ h₁ + σ h₂) / 2, と最大せん断応力 τ h = (σ h₁ - σ h₂) / 2の比。1989年の測定は匂配 μ がやや増加している傾 向がある。

Fig. 7 The ratio of the mean stress value $\sigma h = (\sigma h_1 + \sigma h_2)/2$ and the shear stress value $\tau h = (\sigma h_1 - \sigma h_2)/2$ at Hiraki site. The measured values in 1989 show the tendency of slight increase of the ratio μ .