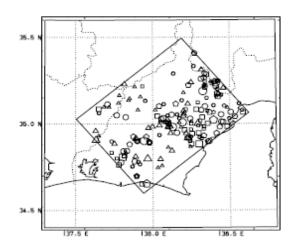
6-2 東海地域推定固着域における長期地震活動変化 Long-term Variation of the Seismicity in the Tokai Area

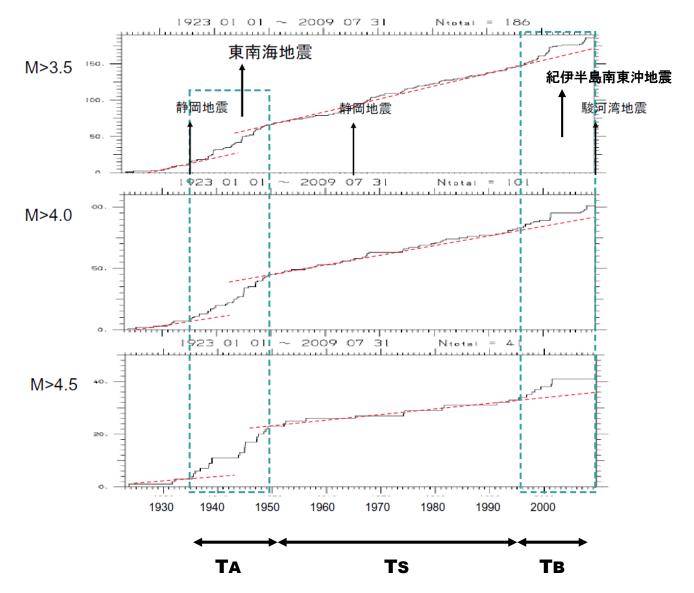
防災科学技術研究所

National Research Institute for Earth Science and Disaster Prevention

JMA カタログを用いて、東海地震想定震源域における地震活動の長期変化を調べた. 期間は 1923 年~2009 年 7 月、M3.5 以上とした. デクラスタリングは行わない.

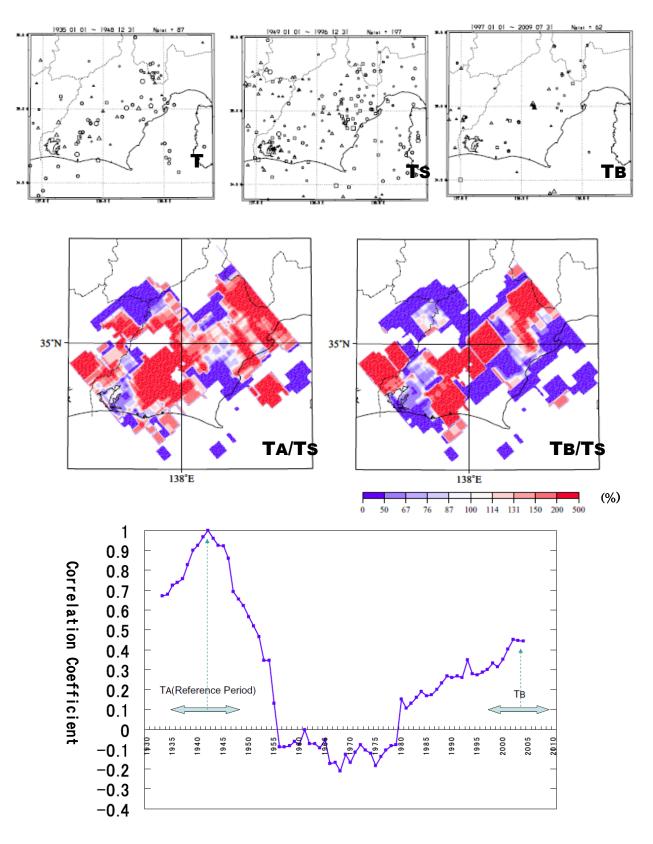
第1図は、推定固着域(上図、黒枠矩形内)に対してマグニチュードしきい値をM3.5、M4.0、M4.5 と変えて描いた積算回数図. この図から、 $1935\sim1948$ 年(T_A)、および、1997 年以降(T_B)の区間に活性化が見られる。JMA カタログではデータの時間的均質性に問題があるが、1935 年からの活性化は際立っており、吉田明夫によっても指摘されている 10 .


M3.5以上を用いて 2 個の区間 T_A および T_B における活動状況の比較を試みた. 第 2 図上図は, T_A T_B ,および,これらにはさまれる区間 T_S (1949~1996 年) での地震活動を示す.同中図では, T_A および T_B において,どこが活性化していたかを知るために, T_S を基準とした場合の活動度比のパタン図を描いた.赤が活性化域,青が静穏化域に対応する.双方のパタンに類似性のあることが分かる(浜名湖が静穏化,これを囲んで活性化,また,中部,北東部も活性化).両者の相関係数は T_B T_A T_A T_B T_A T_B T_A T_A T_B T_A T_A T_B T_A T_A


地震活動に類似の変化があったということは、固着状況に同じ変化が生じていたことを示唆する. 区間 T_B における変化は、浜名湖下の長期的スロースリップと関連づけて考えることができる. 従って、1935 年からの区間 T_A にも同様のスロースリップのあったことが想像される. 以上をまとめて次のように推論する. 1935 年頃から浜名湖周辺に長期的スロースリップが起き、東海と東南海地震、双方の震源域に応力集中が起きた. この時には東南海地震だけが発生した. 同様のスロースリップが 2000 年前後から再開し、現在、東海地震の想定震源域で応力集中が進行しつつある.

(松村正三)

参考文献


1) 地震予知連絡会 30年のあゆみ, 221-242, 2000.

第1図 JMA カタログによる地震回数積算図. T_A (1935-1948), T_B (1997-2009) の 2 個の区間で活動が活性化.

Fig. 1 Cumulative frequency of earthquakes in the inferred-locked zone based on the JMA catalogue. Activations are recognized in two periods of T_A and T_B.

第2図 上図:3個の区間(T_A,T_S,T_B)における震央分布図 (M3.5以上). 中図: T_S を基準としたときの T_A,T_B における地震活動度の比.赤(青)が活性化(静穏化). 下図: T_A の活動を参照パタンとして、時間窓をずらしながら求めた相関係数の時間変化.

Fig. 2 Top: Epicenter distributions for the periods T_A , T_S , and T_B . Middle: Seismic activity ratio patterns for T_A/T_S , and T_B/T_S . Bottom: Temporal change of correlation coefficients executed between the reference period (T_A) and the examined ones.