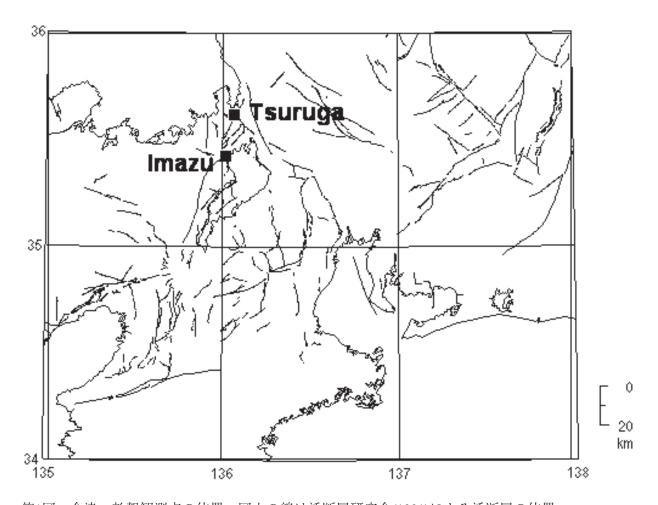
8-3 内陸部の地震空白域における地殻変動連続観測

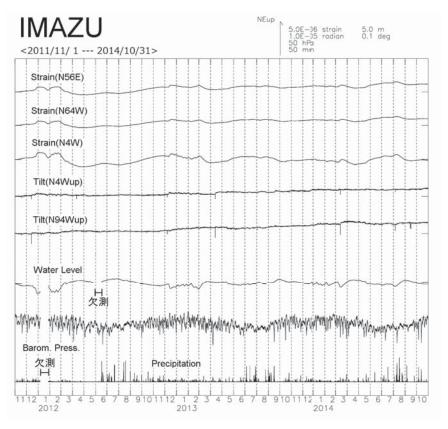
Continuous Observations of Crustal Deformations in and around Intraplate Seismic Gaps

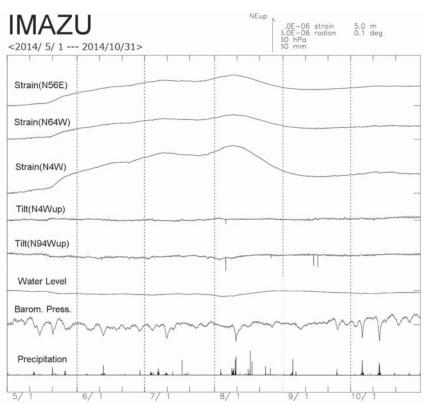
気象庁気象研究所


Meteorological Research Institute, JMA

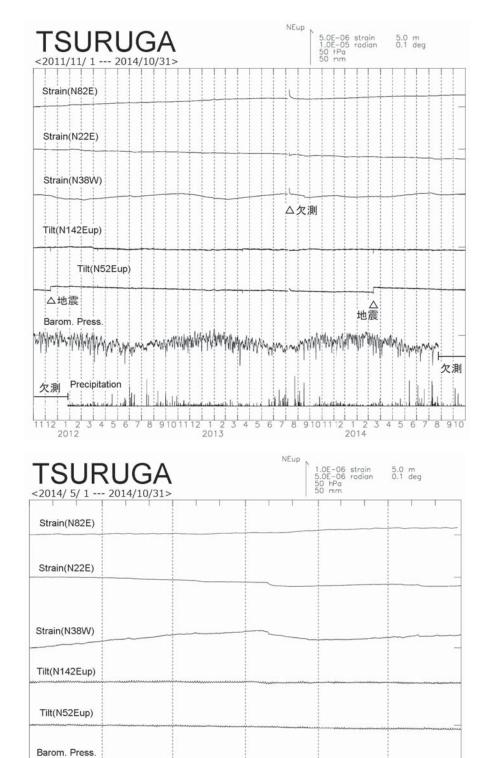
気象研究所では、いわゆる「内陸部の地震空白域」の調査研究のため、近畿地方の今津(滋賀県高島市、35°25′28″N、136°00′42″E)及び敦賀(福井県敦賀市35°37′16″N、136°04′02″E)に石井式三成分ひずみ計・傾斜計からなる地殻変動観測施設を設置し(第1図)、1996年5月より連続観測を行っている。第2、3図に今津・敦賀観測点の2011年11月1日~2014年10月31日の3年間、および2014年5月1日~2014年10月31日の6ヶ月間の観測データ(時間値)をそれぞれ示す。

今津観測点付近には琵琶湖西岸断層帯の知内、饗庭野断層が存在する。断層の傾斜角が 60 度で西上がりの逆断層とすると、Mw5.1 以上のすべりがあった際に期待される今津でのひずみ変化は約 5×10 -6strain である。敦賀観測点付近には敦賀断層が存在する。断層の傾斜角が 90 度で右横ずれ断層とすると、Mw5.4 以上のすべりがあった際に期待される敦賀でのひずみ変化は約 5×10 -6strain である。これ以上のひずみ変化が見られないことから、この期間にこれらの規模以上のすべりは発生しなかったと推定される。


参考文献


- 1) 気象研究所, 内陸部の地震空白域における地殻変動観測, 連絡会報, 57, 554-558, 1997.
- 2) 気象研究所,内陸部の地震空白域における地殻変動連続観測,連絡会報,61,428-432,1999.
- 3) 気象研究所、内陸部の地震空白域における地殻変動連続観測、連絡会報、64、351-354、2000、
- 4) 気象研究所,内陸部の地震空白域における地殻変動連続観測,連絡会報,69,445-447,2003.
- 5) 気象研究所,内陸部の地震空白域における地殻変動連続観測,連絡会報,74,394-396,2005.
- 6) 気象研究所、内陸部の地震空白域における地殻変動連続観測、連絡会報、80、472-474、2008.
- 7) 気象研究所,内陸部の地震空白域における地殻変動連続観測,連絡会報,85,288-291,2011.
- 8) 活断層研究会,新編日本の活断層,東京大学出版会,437pp,1991.
- 9) 地震調査委員会、湖北山地断層帯の評価、
 - http://www.jishin.go.jp/main/chousa/03jun_kohoku/index.htm, 2003.
- 10) 地震調査委員会, 琵琶湖西岸断層帯の評価 (一部改定),
 - http://www.jishin.go.jp/main/chousa/09aug biwako/index.htm, 2009.

第1図 今津・敦賀観測点の位置。図中の線は活断層研究会(1991)による活断層の位置。 Fig.1 Locational map of crustal deformation observation stations (Imazu and Tsuruga). The lines


Fig.1 Locational map of crustal deformation observation stations (Imazu and Tsuruga). The lines in the figure are the position of active faults by The Research Group for Active Faults of Japan (1991).

第2図 今津観測点における(上) 2011年11月~2014年10月, (下)2014年5月~2014年10月のひずみ・ 傾斜変化(時間値). 毎年冬のひずみ・水位変化は, 観測点付近の融雪のための地下水汲 み上げに伴うもの.

Fig.2 (Upper) Changes in crustal strain and tilt at Imazu from May 2011 to April 2014. (Lower) Changes in the same values from November 2013 to April 2014. The changes in strain and water level every winter were caused by the pumping of groundwater to melt snow near the station.

第3図 敦賀観測点における(上) 2011年11月~2014年10月, (下) 2014年5月~2014年10月のひずみ・傾斜変化(時間値). 2013年8月の欠測は電源断によるもの.

Precipitation

欠測

Fig.3 (Upper) Changes in crustal strain and tilt at Tsuruga from May 2011 to April 2014. (Lower) Changes in the same values from November 2013 to April 2014. Data of August 2013 were lost by the trouble of power supply.