8-5 紀伊半島~四国の歪・傾斜・地下水観測結果(2016年11月~2017年4月) The variation of the strain, tilt and groundwater level in the Shikoku District and Kii Peninsula, Japan (from November 2016 to April 2017)

產業技術総合研究所

Geological Survey of Japan, AIST

産業技術総合研究所(産総研)では,東海・紀伊半島・四国の地下水等総合観測施設 20 点において, 歪・地下水等の観測を行っている. 観測点配置図を第1図に示す.

第2~38 図には、2016年11月~2017年4月における歪(・傾斜)・地下水位の1時間値の生データ (上線)と補正値(下線)を示す. 歪・傾斜の図において「N120E」などと示してあるのは、歪・傾 斜の測定方向が北から120度東方向に回転していることを示す. 補正値は、潮汐解析プログラム BAYTAP-G[Tamura et al., 1991]によって、気圧・潮汐・不規則ノイズの影響を除去した結果である. 歪・ 傾斜のグラフについては、直線トレンド(1次トレンド)を除去している. 第39~44 図には、産総 研で決定した、エンベロープ相関法による深部低周波微動の震源の時空間分布および個数を示す. 微 動の地域分けについては、第39図(RT0~3)、第41図(RK0~4)、第43図(RS0~6)に示している.

第95巻の資料から,深部低周波微動解析のアルゴリズム・パラメータを変更したカタログ (ver3.07j)を用いて,第39~43図を作成した.従来のカタログ(ver2.1)に比べて,カタログ ver3.07jでは微動の検出個数が大幅に増加している.カタログの変更に合わせて,微動活動の活発 化を判断する基準を次の段落に記した数値に変更した.基準の数値は,微動が活発化した期間の検 出数が従来のカタログでの検出数と同じ程度になるように設定した.

東海全体(RT0~3)で微動の発生回数が125個/日以上の日を含む期間(その期間については, 回数が50個/日以上で活動開始,50個/日未満で活動終了と判断する)については,第2~8図 および第39~40図に灰色網掛けにてその期間を主な活動地域(RT0~3)と共に表示した.紀伊 半島全体(RK0~4)で微動の発生回数が150個/日以上の日を含む期間(その期間については, 回数が60個/日以上で活動開始,60個/日未満で活動終了と判断する)については,第8~21図 および第41~42図に灰色網掛けにてその期間を主な活動地域(RK0~4)と共に表示した.四国 東部(RS4~6)の合計で微動の発生回数が150個/日以上の日を含む期間(その期間については, 回数が60個/日以上で活動開始,60個/日未満で活動終了と判断する)については,第22~30図, 第37~38図および第43~44図に灰色網掛けにてその期間を主な活動地域(RS4~6)と共に表 示した.四国西部(RS0~3)の合計で微動の発生回数が300個/日以上の日を含む期間(その期 間については,回数が60個/日以上で活動開始,60個/日未満で活動終了と判断する)については, 第27~38図および第43~44図に灰色網掛けにてその期間を主な活動地域(RS0~3)と共に表 示した.深部低周波微動の検出・震源決定には、エンベロープ相関法を用いている.

第94巻の資料から、グラフに記載している depth (深度)の数値を、より正確な数値へ更新した.

謝辞

微動の解析には,防災科研 Hi-net,気象庁,東京大学,京都大学,名古屋大学,高知大学,九州 大学の地震波形記録を使用しました.ここに記して感謝します.

(北川有一・板場智史・武田直人・松本則夫・落唯史・木口努)

参考文献

Tamura, Y., T. Sato, M. Ooe and M. Ishiguro, A procedure for tidal analysis with a Bayesian information criterion, *Geophys. J. Int.*, **104**, 507-516, 1991.

第1表 地下水等総合観測点の一覧

Table 1 List of the observation sites.

3文字コード (変更無し)	旧名称		新名称	新名称 ふりがな	市区町村	図
TYS	豊田下山	\rightarrow	豊田神殿	とよたかんどの	愛知県豊田市	2,3
NSZ	西尾善明	変更無し	西尾善明	にしおぜんみょう	愛知県西尾市	4,5
TYE	豊橋東	\rightarrow	豊橋多米	とよはしため	愛知県豊橋市	6,7
HTS	秦荘	\rightarrow	愛荘香之庄	あいしょうこのしょう	滋賀県愛知郡愛荘町	8
ANO	安濃	\rightarrow	津安濃	つあのう	三重県津市	9,10
ITA	飯高赤桶	\rightarrow	松阪飯高	まつさかいいたか	三重県松阪市	11,12
MYM	海山	\rightarrow	紀北海山	きほくみやま	三重県北牟婁郡紀北町	13,14
ICU	井内浦	\rightarrow	熊野磯崎	くまのいそざき	三重県熊野市	15,16
HGM	本宮三越	\rightarrow	田辺本宮	たなべほんぐう	和歌山県田辺市	17,18
KST	串本津荷	変更無し	串本津荷	くしもとつが	和歌山県東牟婁郡串本町	19,20
NGR	根来	\rightarrow	岩出東坂本	いわでひがしさかもと	和歌山県岩出市	21
BND	板東	\rightarrow	鳴門大麻	なるとおおあさ	徳島県鳴門市	22
ANK	阿南桑野	変更無し	阿南桑野	あなんくわの	徳島県阿南市	23,24
MUR	室戸	\rightarrow	室戸岬	むろとみさき	高知県室戸市	25,26
КОС	高知市	\rightarrow	高知五台山	こうちごだいさん	高知県高知市	27,28
SSK	須崎	\rightarrow	須崎大谷	すさきおおたに	高知県須崎市	29,30
TSS	土佐清水	\rightarrow	土佐清水松尾	とさしみずまつお	高知県土佐清水市	31,32
UWA	宇和	\rightarrow	西予宇和	せいようわ	愛媛県西予市	33,34
MAT	松山	\rightarrow	松山南江戸	まつやまみなみえど	愛媛県松山市	35,36
NHK	新居浜黒島	変更無し	新居浜黒島	にいはまくろしま	愛媛県新居浜市	37,38

- 第1図 地下水等総合観測点の分布図(●,■,▲). 観測点の一覧は第1表に示す.●はデジタル方式の石井式歪計・ 傾斜計を併設している新規観測点,■は Gladwin 式歪計・ミットヨ式傾斜計を併設している新規観測点,
 ▲はアナログ方式の石井式歪計を併設している既存の観測点.灰色の領域は短期的 SSE 及び深部低周波微動が定常的に発生していると考えられる地域.
- Fig.1 Location of the observation sites (●, ■, ▲). The list of the observation sites is shown in Table.1. Circles (●) show the new observation sites at which the Ishii type multi-component strainmeter and the tiltmeter (digital type) are installed. Squares (■) show the new observation sites at which the Gladwin type multi-component strainmeter and the Mitsutoyo type tiltmeter are installed. Triangles (▲) show the old observation sites at which the Ishii type multi-component strainmeter (analog type) are installed. The gray mesh shows the area which is thought that short-term slow slip events and deep low frequency tremors occur stationarily.

- 第3図 TYSにおける傾斜・地下水位観測結果(2016年11 月~2017年4月)
- Fig.3 Observed tilts and groundwater levels at the TYS observation site from November 2016 to April 2017.

- 第5図 NSZ における傾斜・地下水位観測結果(2016年11 月~2017年4月)
- Fig.5 Observed tilts and groundwater levels at the NSZ observation site from November 2016 to April 2017.

第8図 HTS における歪・地下水位観測結果(2016年11月 ~2017年4月)

Fig.8 Observed strains and groundwater levels at the HTS observation site from November 2016 to April 2017.

- 第7図 TYE および TYH における傾斜・地下水位観測結果 (2016年11月~2017年4月)
- Fig.7 Observed tilts and groundwater levels at the TYE and the TYH observation site from November 2016 to April 2017.

- 第9図 ANOにおける歪観測結果(2016年11月~2017年 4月)
- Fig.9 Observed strains at the ANO observation site from November 2016 to April 2017.

第10図 ANOにおける傾斜・地下水位観測結果(2016年 11月~2017年4月)

Fig.10 Observed tilts and groundwater levels at the ANO observation site from November 2016 to April 2017.

第12図 ITAにおける傾斜・地下水位観測結果(2016年11 月~2017年4月)

Fig.12 Observed tilts and groundwater levels at the ITA observation site from November 2016 to April 2017.

第11図 ITA における歪観測結果(2016年11月~2017年4月) Fig.11 Observed strains at the ITA observation site from November 2016 to April 2017.

- 第13 図 MYM における 歪観測結果(2016 年 11 月~2017 年 4 月)
- Fig.13 Observed strains at the MYM observation site from November 2016 to April 2017.

- 第14図 MYM における傾斜・地下水位観測結果(2016年 11月~2017年4月)
- Fig.14 Observed tilts and groundwater levels at the MYM observation site from November 2016 to April 2017.

第16図 ICUにおける傾斜・地下水位観測結果(2016年11 月~2017年4月)

Fig.16 Observed tilts and groundwater levels at the ICU observation site from November 2016 to April 2017.

- 第15 図 ICU における歪観測結果(2016 年 11 月~2017 年 4月)
- Fig.15 Observed strains at the ICU observation site from November 2016 to April 2017.

- 第17図 HGM における歪観測結果(2016年11月~2017年 4月)
- Fig.17 Observed strains at the HGM observation site from November 2016 to April 2017.

- 第18図 HGM における傾斜・地下水位観測結果(2016年 11月~2017年4月)
- Fig.18 Observed tilt and groundwater levels at the HGM observation site from November 2016 to April 2017.

第20図 KSTにおける傾斜・地下水位観測結果(2016年11 月~2017年4月)

Fig.20 Observed tilts and groundwater levels at the KST observation site from November 2016 to April 2017.

- 第19図 KSTにおける歪観測結果(2016年11月~2017年 4月)
- Fig.19 Observed strains at the KST observation site from November 2016 to April 2017.

- 第21図 NGRにおける歪・地下水位観測結果(2016年11 月~2017年4月)
- Fig.21 Observed strains and groundwater levels at the NGR observation site from November 2016 to April 2017.

第22図 BNDにおける歪・地下水位観測結果(2016年11 月~2017年4月)

Fig.22 Observed strains and groundwater levels at the BND observation site from November 2016 to April 2017.

第24図 ANK における傾斜・地下水位観測結果(2016年 11月~2017年4月)

Fig.24 Observed tilts and groundwater levels at the ANK observation site from November 2016 to April 2017.

- 第23図 ANK における歪観測結果(2016年11月~2017年 4月)
- Fig.23 Observed strains at the ANK observation site from November 2016 to April 2017.

第25図 MUR における歪観測結果(2016年11月~2017年 4月)

Fig.25 Observed strains at the MUR observation site from November 2016 to April 2017.

- 第26図 MURにおける傾斜・地下水位観測結果(2016年 11月~2017年4月)
- Fig.26 Observed tilts and groundwater levels at the MUR observation site from November 2016 to April 2017.

第28図 KOCにおける傾斜・地下水位観測結果(2016年11 月~2017年4月)

Fig.28 Observed tilts and groundwater levels at the KOC observation site from November 2016 to April 2017.

- 第 27 図 KOC における歪観測結果(2016 年 11 月~2017 年 4 月)
- Fig.27 Observed strains at the KOC observation site from November 2016 to April 2017.

- 第29図 SSK における歪観測結果(2016年11月~2017年 4月)
- Fig.29 Observed strains at the SSK observation site from November 2016 to April 2017.

- 第30図 SSK における傾斜・地下水位観測結果(2016年11 月~2017年4月)
- Fig.30 Observed tilts and groundwater levels at the SSK observation site from November 2016 to April 2017.

第32図 TSS における傾斜・地下水位観測結果(2016年11 月~2017年4月)

Fig.32 Observed tilts and groundwater levels at the TSS observation site from November 2016 to April 2017.

- 第31 図 TSS における歪観測結果(2016 年 11 月~2017 年 4月)
- Fig.31 Observed strains at the TSS observation site from November 2016 to April 2017.

- 第33 図 UWA における歪観測結果(2016 年 11 月~2017 年 4月)
- Fig.33 Observed strains at the UWA observation site from November 2016 to April 2017.

- 第34図 UWA における傾斜・地下水位観測結果(2016年 11月~2017年4月)
- Fig.34 Observed tilts and groundwater levels at the UWA observation site from November 2016 to April 2017.

第36図 MATにおける傾斜・地下水位観測結果(2016年11 月~2017年4月)

Fig.36 Observed tilts and groundwater levels at the MAT observation site from November 2016 to April 2017.

- 第35 図 MAT における歪観測結果(2016 年 11 月~2017 年 4月)
- Fig.35 Observed strains at the MAT observation site from November 2016 to April 2017.

- 第 37 図 NHK における歪観測結果(2016 年 11 月~2017 年 4 月)
- Fig.37 Observed strains at the NHK observation site from November 2016 to April 2017.

- 第38図 NHK における傾斜・地下水位観測結果 (2016年 11月~2017年4月)
- Fig.38 Observed tilts and groundwater levels at the NHK observation site from November 2016 to April 2017.

- 第39図 東海地方における低周波微動の震央分布と時空間 分布(2016年11月~2017年4月)
- Fig.39 Epicentral and space-time distributions of deep low frequency tremors in the Tokai district from November 2016 to April 2017.

Deep low-frequency tremors in Tokai (日値) (2016/11/01 00:00 - 2017/05/01 00:00 (JST))

第40図 東海地方における低周波微動の発生個数(2016年 11月~2017年4月)

- 第41 図 紀伊半島における低周波微動の震央分布と時空間 分布(2016年11月~2017年4月)
- Fig.41 Epicentral and space-time distributions of deep low frequency tremors in the Kii Peninsula from November 2016 to April 2017.

第42図 紀伊半島における低周波微動の発生個数(2016年 11月~2017年4月)

- 第43 図 四国地方における低周波微動の震央分布と時空間 分布(2016年11月~2017年4月)
- Fig.43 Epicentral and space-time distributions of deep low frequency tremors in the Shikoku district from November 2016 to April 2017.

	Deep low-frequency t (2016/11/01 00:00 -	remors in Shikoku 2017/05/01 00:00	(日値) (JST))
1000 [/day]	Shikoku tremors-all	RS3 RS6	
500 [/day]	Shikoku tremors-RSO		
500 [/day]	Shikoku tremors-RS1		
500 [/day]	Shikoku tremors-RS2	h	
500 [/day]	Shikoku tremors-RS3		
500 [/day]	Shikoku tremors-RS4		
500 [/day]	Shikoku tremors-RS5		
500 [/day]	Shikoku tremors-RS6		
1	11 12 01 2016	02 02 2017	03 04

第44 図 四国地方における低周波微動の発生個数(2016 年 11 月~2017 年 4 月)

