2. 研究開発法人・行政機関等

(1) 防災科学技術研究所

1. はじめに

防災科学技術研究所(以下,防災科研)は1973年に 観測を開始した深度3500mの岩槻地殻活動観測施設に 始まり,関東・東海地殻活動観測網や強震観測網,相模 湾海底地震観測施設などを東海地震の地震防災対策強 化地域等に重点的に展開してきた.平成7年(1995年) 兵庫県南部地震及び平成23年(2011年)東北地方太平 洋沖地震の発生とそれらに伴う2つの大震災を契機に, 全国どこでも地震が起こりうるということを前提に,陸 域においては空間的に均質な観測を行うとともに,海域 においても地震や津波をリアルタイムで観測するよう, 日本の防災に向けた地震観測の方針は大きく変革した. 本稿では,まず防災科研が全国の陸域に整備してきた 基盤観測網について概説し,次に海域における観測網を 統合して整備し運用している陸海統合地震津波観測網 (MOWLAS) について述べる(図1).

2. 基盤観測網の運用

2.1 陸域を対象とした観測網

1995年に発生し 6400 名以上が犠牲者となった阪神・ 淡路大震災発生当時の当該地域における観測体制は十分 であったとはいえず,地震後ただちに事態の全体像を把

図1 陸海統合地震津波観測網 MOWLAS の観測点配置

握することが困難であった.この震災を契機に地震防災 対策特別措置法が施行され、そのもとに地震調査研究推 進本部(以下,地震本部)が設置された.防災科研では 地震本部が策定した基盤的調査観測計画¹⁾の方針のもと、 全国の陸域をほぼ均一に覆う高精度で確実な観測を行う 基盤観測網を構築し運用してきた²⁾.基盤観測網は地震 による被害の軽減と地震像の解明を目指し、地震発生の 長期評価, 地震活動の現状把握・評価, 地震ハザード評価, 地震情報の早期伝達の四つを目的としている. 基盤地震 観測網は、微小な揺れを測るための高感度地震観測網 (Hi-net : High Sensitivity Seismograph Network of Japan, 約800 観測点)^{3) 4)}, 強い揺れを測るための二つの強震 観測網, 全国強震観測網 (K-NET: Kyoshin Network, 約1050 観測点)と基盤強震観測網(KiK-net: Kiban-Kyoshin Network,約700 観測点)⁵⁾⁶⁾,さらには、周期が 数十秒以上に至る広帯域の地震波を測定することがで きる広帯域地震観測網(F-net: Full-range Seismograph Network of Japan, 73 観測点)^{7) 8)}から成っている. その一 部は地震の翌年の1996年から運用を開始し、2000年頃 までには現在の陸域における観測体制が構築された. こ の他,16火山に55観測点から成る火山観測網(V-net: Fundamental Volcano Observation Network in Japan)⁹⁾ E 構築・運用し、火山噴火のメカニズム解明などの基礎的 な研究や火山活動監視に貢献している.

最近10年では、平成23年(2011年)東北地方太平 洋沖地震を初めとする多くの地震の記録を正確に捉える ことに成功し、地震発生のメカニズムの解明や余震活動 の把握に大きく貢献してきた。例えば、東北地方太平洋

図2 東北地方太平洋沖地震の強震記録.(左図)プロットに 使用したK-NETとKiK-net観測点の位置.カラーコンター はすべり量分布を、5つの矩形は強震動発生域を示す.(中 図)最大振幅で正規化した加速度記録.(右図)速度波 形のEW成分.複数の波群が伝播していく様子が認めら れ、本震の震源過程が複雑であることを示している.

沖地震の強震記録(図2)において,複数の波群が伝播 していく様子は、本地震の震源過程が複雑であることを 明快に示した¹⁰⁾¹¹⁾.また、2016年4月の熊本地震では、 14日と16日にそれぞれ最大震度7の強い揺れを伴う地 震が観測され、広範囲にわたり地震活動が活発化した. 防災科研は、震源分布の時間変化、強震動分布、震源 過程について精密な解析を行い、それらの結果を地震本 部の地震調査委員会や地震予知連絡会で報告した.こ れらの地震に対する解析結果は、学会や学術雑誌、ウェ ブサイトで発表することにより、社会への迅速で詳細な 情報提供が可能となっている.

2.2 海域を対象とした観測網

震源の直上で観測することは、現象の解明という学術 の見地からも、地震や津波の即時予測の観点からもメ リットが大きい.沖合における地震を直上で観測するこ とで、微小地震や微動の検知や震源・メカニズム決定、 地震やスロースリップの震源断層モデル推定などの精度 が格段に向上し、優れた研究基盤として学術的な研究成 果の創出に大きく貢献することが期待される.

東北地方太平洋沖地震では、東日本の太平洋岸沖合 における地震津波の観測体制の不足が津波警報や緊急 地震速報の過小評価の一因となったとの指摘がなされ た¹²⁾.東北地方太平洋沖地震当時,海域における海底ケー ブル式の地震や津波の観測システムは、設置主体別に、 気象庁が整備した東海沖(1979年)、房総沖(1985年)、 東南海沖(2008年)、防災科研が整備した相模湾(1996 年)、東京大学地震研究所が整備した伊豆東方沖(1994 年)、三陸沖(1996年)、(国研)海洋研究開発機構(以 下, JAMSTEC)が整備した室戸岬沖(1997年)、釧路・ 十勝沖(1999年)などが存在していた.地震直後に防 災情報を出すには海底ケーブル式による定常観測が有効 であるが、当時の観測網は稠密に空間を覆うかたちでの 地震・津波観測体制とはなってはおらず、新たな観測体 制の構築が急務であった.

防災科研は、東日本地域太平洋岸沖合における地震 や津波の早期検知・情報伝達などを目的として、2011 年度より日本海溝海底地震津波観測網(S-net: Seafloor Observation Network for Earthquakes and Tsunamis along the Japan Trench)¹³⁾の整備を開始した. S-net は、 千葉県房総半島沖から北海道沖日本海溝沿いの海域150 地点において地震と津波をリアルタイムで観測するケー ブル式観測網として、2017 年3月に完成した. 房総沖、 茨城・福島沖、宮城・岩手沖、三陸沖北部、釧路・青森沖、 海溝軸外側の6つのセグメントの合計約5500kmにわた る光海底ケーブルを敷設し、海底に地震計や津波計から なる観測装置を数珠つなぎに設置した. 観測点はおおむ ね 30 ~ 60km 間隔で設置されており,それぞれの観測 地点には津波を観測するための水圧計と地震を観測する ための速度計や加速度計が設置されている.

S-net データによる地震波形データの解析により, 2016年11月22日に発生した福島県沖を震源とする M7.4の地震の詳細な余震活動が推定された.震源は南 東傾斜の断層面に沿って分布し,余震の活動域が本震位 置から南西に延びていることを明瞭に示した.また,水 圧計により,波源から直接伝播する津波と海岸で反射し た津波が北上する様子を捉え¹⁴⁾,それらが干渉すること で仙台港での最大波をもたらしたことを示した(図3).

一方,近い将来巨大地震の発生が懸念されている南 海トラフ沿いには、JAMSTEC が整備した地震・津波観 測監視システム (DONET: Dense Oceanfloor Network system for Earthquakes and Tsunamis)^{15) 16)}がある.東日 本大震災発生当時は、熊野灘沖をカバーする DONET1 は当時まだ整備途中であったが、約半数の10点で観測 を開始していた.2011 年 8 月には 20 観測点での観測を 開始し、その後、紀伊水道沖をカバーする DONET2 は、 東日本大震災の発生を受け整備計画が前倒された.2016 年 3 月に全 51 点の整備を完了したのち、2016 年 4 月に 防災科研に移管された.

即時予測の観点から言えば、海域における観測は人が 住んでいないところへの観測網の延長である. S-net や DONET の観測データを用いることで、陸域や沿岸のみ で観測する場合と比較して、地震動の検知が最大 30 秒 程度、津波に関しては 20 分程度早くなり、気象庁の緊 急地震速報や津波警報などの各種警報業務や民間のシ ステムの制御等における猶予時間の増大や精度向上に貢 献できる. 2012 年 3 月には DONET1 のデータが気象庁 による津波警報の基礎データとして活用され始め、2016 年 7 月には DONET に加えて S-net の海底津波計データ の津波情報への活用が始まった. また、2015 年 3 月か

図3 2016 年福島県沖の地震の S-net 観測点で記録された 水圧波形. 津波は S-net 観測点へ直接伝播した第一波 と沿岸で反射した第二波を観測した.

らは DONET の,2019 年 6 月からは S-net の海底地震 計データの気象庁の緊急地震速報への活用が開始され た.更に2017 年 11 月からは S-net 及び DONET の海底 地震計データの鉄道事業者への配信を開始し,新幹線の 緊急停止などの防災対策への活用がなされている.

3. 陸海統合地震津波観測網(MOWLAS)

地震は陸域でも海域でも発生し、海域の地震であっ てもエネルギーは地震波として陸へ到達して被害を起こ す. 観測を陸域と海域に分けているのは観測技術の問題 に過ぎず、陸域と海域の観測データを統合的に解析する ことはさまざまなメリットがあるため、観測データの蓄 積と統合的な解析を行うための研究および統合データの 活用を進展することが重要である. 防災科研は、上述の 陸海の6つの地震観測網及び基盤的火山観測網 V-netの 7つの観測網を陸海統合地震津波火山観測網 MOWLAS (Monitoring of Waves on Land and Seafloor)¹⁷⁾ として 2017 年 11 月より統合運用している.

MOWLAS の連続波形データは、IP-VPN を用いた伝 送網によりリアルタイムで伝送されている.可能な限り 帯域が確保された回線を選択すること、網内での伝送遅 延を 0.5 秒以内に抑えることで、高速度・高品質のデー タ収集を実 現している.データは防災科研に伝送され るだけではなく、気象庁にもリアルタイムで伝送され、 緊急地震速報や津波警報などに活用されている.

運用開始から 2019 年末現在, Hi-net により 350 万イ ベントを超える震源決定, F-net では 4 万イベント近い メカニズム推定がなされるとともに,強震観測網では 1.6 万イベント(約 80 万データ)を超える強震波形が収録 されるなど大量の高品質なデータが防災科研のデータセ ンターでアーカイブ・公開されている. これらのデータ は,簡単なユーザー登録をすることで,使用可能となる. MOWLAS の観測データから,各種スローイベントの発 見や地下構造モデル構築,極大地震動の取得など,様々 な学術的成果が得られている. また,構造設計をはじめ とする工学的利用, さらには各種ハザード評価など防災 に直結する情報基盤という観点での貢献も大きい.

4. その他の観測網とデータの共有

首都圏で発生する地震の研究とその被害軽減を目的に 2007 年から東京大学地震研究所などによって構築され た首都圏地震観測網(MeSO-net: Metropolitan Seismic Observation network)¹⁸⁾は、2016 年度末に防災科研に移 管され、現在は防災科研によって運用されている. 観測 点は、首都圏の約 300 カ所(東京都、茨城県、神奈川県、 千葉県、山梨県、埼玉県)に、直線状(観測点間隔 3km 程度)および面状(4~10km 間隔)に配置されている. 各観測点における地震計は、首都圏の大きなノイズや温 度変化を避けるため約 20m の縦孔の底に設置されてお り、地上には地震データの収録装置、電源装置、通信機 器のほか、温度・気圧計を設置している.取得されたデー タはリアルタイムで防災科研へ送信され、防災科研およ び東京大学地震研究所で蓄積されている.MeSO-net で は、通信回線の輻輳や停電等で不通になったりする場合 に備え、観測点でデータの送信速度をコントロールし、 回線復旧後に自動的に再送する自律協調型地震観測装 置を使用している.MeSO-net データは、MOWLASの データと同様に防災科研のウェブサイトからダウンロー ド可能となっている.

観測を実施するためには多くの手間と時間が必要であ るため、従来、観測データはそれを取得した研究者や組 織で使用し公開されることは少なかったが、阪神・淡路 大震災を契機に気象庁・大学・研究機関の観測データが 一元化された.防災科研は、各機関で観測されたデータ をリアルタイムで共有するための仕組み(TDX: Tokyo Data eXchange)を提供している.防災科研は、これら 他機関のデータについても収集・アーカイブするととも に、インターネット上での公開の責を担っている.

5. おわりに

図1に示したように、防災科研では全体で2000を超 える観測点を一元的に維持・管理し、かつデータの取 得・保存・公開についても、安定した運用を行っている. MOWLAS データの利活用を推進するため、2019年4月 には、各観測網データに対してデジタルオブジェクト識 別子(DOI: Digital Object Identifier)を取得した¹⁹⁾.こ のような安定した運用の実現のためには、天災などによ り生じた観測データの異常を直ちに検出して迅速な対 応・復旧を行い、老朽化した機器の更新を確実に実施し なければならない、東北地方太平洋沖地震直後において は、停電によるデータの一時的な欠測や強い揺れによる 地震計の故障、津波による観測施設の流出などに対する 復旧、または膨大な数の地震発生による大量データの処 理に対応した経験を踏まえて、今後の激甚災害発生時に おける業務継続のための技術を強化した.

現在では MOWLAS のデータは気象庁が発表する緊 急地震速報,津波警報,震度情報や震源位置決定に使 用されているほか,新幹線制御など民間事業者にも活用 されつつあるなど,データの社会実装が着実に前進して いる.これらの社会実装を確実に機能させるためには, 今後とも長期間にわたって MOWLAS の安定的運用およ び観測技術やデータ利活用技術の開発を推進していく必 要がある.

(青井 真・汐見 勝彦)

参考文献

- 1) 地震調査研究推進本部,1997. 地震に関する基盤 的調査観測計画.
- Okada, Y., K. Kasahara, S. Hori, K. Obara, S. Sekiguchi, H. Fujiwara, and A. Yamamoto, 2004. Recent progress of seismic observation networks in Japan -Hi-net, F-net, K-NET and KiK-net -. Earth, Planets Space, 56, xv-xxviii.
- 3) Obara, K., K. Kasahara, S. Hori, and Y. Okada, 2005. A densely distributed high-sensitivity seismograph network in Japan: Hi-net by National Research Institute for Earth Science and Disaster Prevention. Rev. Sci. Instrum. 76, 021301-doi:10.1063/1.1854197.
- 4) 汐見勝彦・小原一成・針生義勝・松村稔,2009.防 災科研 Hi-net の構築とその成果.地震2,61,S1-S7.
- 5) Aoi, S., T. Kunugi, H. Nakamura, and H. Fujiwara, 2011. Deployment of new strong motion seismographs of K-NET and KiK-net, in "Earthquake Data in Engineering Seismology" ed. by S. Akkar, P. Gülkan, and T. van Eck. Geotechnical, Geological, and Earthquake Engineering, 14, Springer, Dordrecht, 167-186, doi:10.1007/978-94-007-0152-6_12.
- 6) 功刀卓・青井真・藤原広行, 2009. 強震観測-歴史
 と展望-. 地震 2, 61, S19-S34.
- 福山英一・石田瑞穂・堀貞喜・関口渉二・綿田辰吾, 1996, Freesia Project による広帯域地震観測.防災 科学技術研究所報告, 57, 23 - 31.
- 松本拓己・堀貞喜・松林弘智,2009.広帯域地震観 測-防災科研 F-netの10年-.地震2,61,S9-S18.
- Tanada, T., H. Ueda, M. Nagai, and M. Ukawa, 2017. NIED' s V-net, the fundamental volcano observation network in Japan. J. Disaster Res., 12 (5), 926-931.
- Suzuki, W., S. Aoi, H. Sekiguchi, and T. Kunugi, 2012. Rupture process of the 2011 Tohoku-Oki mega-thrust earthquake (M9.0) inverted from strong-motion data. Geophys. Res. Lett., 38, L00G16, doi:10.1029/2011GL049136.
- 青井真・功刀卓・鈴木亘・森川信之・中村洋光・先 名重樹・藤原広行,2012.2011年東北地方太平洋沖 地震の強震動.地震,64,169-182.

- 12) 気象庁, 2012. 平成 23 年(2011年) 東北地方太平 洋沖地震調査報告. 気象庁技術報告.
- 13) Kanazawa, T., K. Uehira, M. Mochizuki, T. Shinbo, H. Fujimoto, S. Noguchi, T. Kunugi, K. Shiomi, S. Aoi, T. Matsumoto, S. Sekiguchi, and Y. Okada, 2016. S-net project, cabled observation network for earthquakes and tsunamis. SubOptic 2016, WE2B–3.
- 14) 青井真, 2017. S-net でとらえられた地震と津波.地 震本部ニュース 2017 春, 8-9.
- 15) Kaneda, Y., K. Kawaguchi, E. Araki, H. Matsumoto, T. Nakamura, S. Kamiya, K. Ariyoshi, T. Hori, T. Baba, and N. Takahashi, 2015. Development and application of an advanced ocean floor network system for megathrust earthquakes and tsunamis. in " Seafloor Observatories, A new vision of the Earth from the Abyss", ed. by P. Favali, L. Beranzoli, and A. De Santis, Springer Praxis Books, Springer, Berlin, Heidelberg, 643-663, doi:10.1007/978-3-642-11374-1_25.
- 16) Kawaguchi, K., S. Kaneko, T. Nishida, and T. Komine, 2015. Construction of the DONET real-time seafloor observatory for earthquakes and tsunami monitoring. in "Seafloor Observatories, A new vision of the Earth from the Abyss", ed. by P. Favali, L. Beranzoli, and A. De Santis, Springer Praxis Books, Springer, Berlin, Heidelberg, 211-228, doi 10.1007/978-3-642-11374-1_10.
- 17)青井真・淺野陽一・功刀卓・木村武志・植平賢司・ 高橋成実・上田英樹・汐見勝彦・松本拓己・藤原広行・ 地震津波火山ネットワークセンター,2018.陸海統 合地震津波火山観測網(MOWLAS)の構築.日本 地震学会2018年度秋季大会,S19-04.
- 18) 笠原敬司・酒井慎一・森田裕一・平田 直・鶴岡弘・
 中川茂樹・楠城一嘉・小原一成,2009. 首都圏地震
 観測網(MeSO-net)の展開.東京大学地震研究所 彙報,84,71-88.
- 防災科学技術研究所,2019. MOWLASの各観測網 にデータ DOI が付与されました. http://www.mowlas.bosai.go.jp/news/20190408/