3-1 東北地方とその周辺の地震活動(2017年11月~2018年4月) Seismic Activity in and around the Tohoku District (November 2017 – April 2018)

気象庁 仙台管区気象台 Sendai Regional Headquaters, JMA

今期間,東北地方とその周辺でM4.0以上の地震は92回, M5.0以上は5回, M6.0以上は2回発生した. このうち最大のものは,2018年1月24日に青森県東方沖で発生したM6.3の地震であった.

2017年11月~2018年4月のM4.0以上の震央分布を第1図(a)及び(b)に示す.

主な地震活動は以下のとおりである.

(1) 「平成23年(2011年) 東北地方太平洋沖地震」の余震活動(第2図)

2017年11月から2018年4月の間に、2011年3月11日に発生した「平成23年(2011年)東北地方 太平洋沖地震」(M9.0,最大震度7,以下「東北地方太平洋沖地震」と呼ぶ)の余震域(図中 の領域 a)では、M5.0以上の地震は8回、M5.5以上の地震は3回発生した.また、震度4以上を 観測する地震は6回発生した.なお、(2)~(8)で記述している地震のうち、2018年1月24日 に発生した青森県東方沖の地震を除き全て図中の領域 a 内で発生しており、いずれも震源付近 では東北地方太平洋沖地震の発生以降、地震活動が活発となっている.

余震は次第に少なくなってきているものの,領域 a 内の沿岸に近い領域を中心に,本震発生以前に比べて活発な地震活動が継続している.

(2) 宮城県沖の地震(M4.7,最大震度4,第3図)

2017年11月11日01時38分に宮城県沖の深さ59kmでM4.7の地震(最大震度4)が発生した.この 地震は太平洋プレート内部で発生した.発震機構(CMT解)は東西方向に圧力軸を持つ逆断層 型である.

(3) 三陸沖の地震(M6.0, 最大震度2, 第4図)

2017年11月13日07時24分に三陸沖の深さ11km (CMT解による) でM6.0の地震(最大震度2)が 発生した.この地震は日本海溝の海溝軸東側の太平洋プレート内部で発生した.発震機構 (CMT解)は北西-南東方向に張力軸を持つ正断層型である.

(4) 福島県沖の地震(M4.8, 最大震度4, 第5図)

2017年11月17日10時02分に福島県沖の深さ48kmでM4.8の地震(最大震度4)が発生した.この 地震は,発震機構(CMT解)が西北西-東南東方向に圧力軸を持つ逆断層型で,太平洋プレー トと陸のプレートの境界で発生した.

(5) 岩手県沖の地震(M5.5, 最大震度4, 第6図)

2017年12月16日02時58分に岩手県沖の深さ52kmでM5.5の地震(最大震度4)が発生した.この 地震は,発震機構が東北東-西南西方向に圧力軸を持つ横ずれ断層型で,太平洋プレート内部 で発生した.

(6) 青森県東方沖の地震(M6.3, 最大震度4, 第7図(a)~(d))

2018年1月24日19時51分に青森県東方沖の深さ34kmでM6.3の地震(最大震度4)が発生した. この地震は,発震機構(CMT解)が東西方向に圧力軸を持つ逆断層型で,太平洋プレートと陸 のプレートの境界で発生した.この地震は,「1968年十勝沖地震」の北側のアスペリティ (「平成6年(1994年)三陸はるか沖地震」ですべらなかった領域)付近に位置している.この 地震の震央付近では,2001年8月14日にM6.4の地震が発生しており,今回の地震との強震波形相 関解析によるコヒーレンス値は比較的高く,それぞれの地震の発生から1ヶ月間の震源分布も似 ている.

(7) 福島県沖の地震(M5.8, 最大震度4, 第8図(a)~(d))

2018年2月26日01時28分に福島県沖の深さ40kmでM5.8の地震(最大震度4)が発生した.この 地震は,発震機構(CMT解)が北北西-南南東方向に圧力軸を持つ逆断層型である.S-netのデ ータを用いた自動震源を観測点補正値とDouble Difference法¹⁾により再決定すると,一元化震源 よりやや深く高角な震源分布が得られた.発震機構解の分析結果もこれと調和的である.

(8) 宮城県沖の地震 (M5.1, 最大震度4, 第9図(a)~(c))

2018年3月23日06時32分に宮城県沖の深さ45kmでM5.1の地震(最大震度4)が発生した.この 地震は,発震機構(CMT解)が西北西-東南東方向に圧力軸を持つ逆断層型で,太平洋プレー トと陸のプレートの境界で発生した.この地震は,2013年3月31日の宮城県沖の地震(M5.3)と ともに新たな相似地震として検出された.

参考文献

1) Waldhauser, F. and W. L. Ellsworth : A Double-Difference Earthquake Location Algorithm: Method and Application to the Northern Hayward Fault, California, Bull. Seism. Soc. AM., 90, 1353-1368 (2000).

- 第1図(a) 東北地方とその周辺の地震活動(2017年11月~2018年1月, M≧4.0, 深さ≦700km)
- Fig. 1(a) Seismic activity in and around the Tohoku district (November 2017 January 2018, $M \ge 4.0$, depth ≤ 700 km).

第1図(b) つづき (2018年2月~4月, M≧4.0, 深さ≦700km) Fig. 1(b) Continued (February – April 2018, M≧4.0, depth≦700km).

平成 23 年(2011 年)東北地方太平洋沖地震の余震活動

2017年11月から2018年4月の間に、領域a(「平成23年(2011年)東北地方太平洋沖地震」の余 震域)でM5.0以上の地震は8回発生した。また、最大震度4以上を観測する地震は6回発生した。 2011年3月11日に発生した「平成23年(2011年)東北地方太平洋沖地震」の余震活動は次第に 少なくなってきているものの、余震域の沿岸に近い領域を中心に、本震発生以前に比べ活発な地震 活動が継続している。

領域 a で 2017 年 11 月から 2018 年 4 月の間に発生した M5.5 以上の地震は以下のとおり。

²⁰¹⁷年11月から2018年4月の間に領域a内で発生したM5.5以上の地震

2011年11月から2010年年月の前に展現arftで元王したmb.0以上の地展												
発生日時		震央地名	М	Mw	最大震度	発震機構 (CMT解)						
11月13日	7時24分	三陸沖	6.0	5.9	2	北西-南東方向に張力軸を持つ正断層型						
12月16日	2時58分	岩手県沖	5.5	I	4	東北東-西南西方向に圧力軸を持つ横ずれ断層型 (初動発震機構解)						
02月26日	1時28分	福島県沖	5.8	5.6	4	北北西-南南東方向に圧力軸を持つ逆断層型						

震央分布図 (2011 年 3 月 1 日~2018 年 4 月 30 日、深さすべて、M≧4.0)

2011 年3月からの地震を薄く、2016 年 11 月から 2017 年 10 月の地震を濃く、2017 年 11 月以降の地震を赤く表示。発震機構は CMT 解。

第2図 「平成23年(2011年)東北地方太平洋沖地震」の余震活動(2017年11月~2018年4月)

Fig. 2 Seismic activity of aftershocks of The 2011 off the Pacific coast of Tohoku Earthquake (November 2017 – April 2018).

11月11日 宮城県沖の地震

2017 年 11 月 11 日 01 時38 分に宮城県沖の深さ 59km でM4.7 の地震(最大震度 4)が発生した。こ の地震は太平洋プレート内部で発生した。発震機 構(CMT 解)は東西方向に圧力軸を持つ逆断層型 である。

1997 年 10 月以降の活動をみると、今回の地震 の震源付近(領域 b)では、「平成 23 年(2011 年) 東北地方太平洋沖地震」(以下、東北地方太平洋 沖地震)の発生以降に、M4.0以上の地震がたびた び発生するなど地震活動が活発になっている。

1923 年1月以降の活動をみると、今回の地震の 震央周辺(領域 c)では、M7.0以上の地震が7回 発生しており、「1978 年宮城県沖地震」(M7.4、最 大震度5)では、死者28人、負傷者1325人、住 家全壊1183 棟等の被害が生じた(「日本被害地震 総覧」による)。

領域b内のM-T図及び回数積算図

第3図 2017年11月11日 宮城県沖の地震

震央位置

ടിക് / ആര്

福島県

1936年11月3日

M7.4

Fig. 3 The earthquake off Miyagi Prefecture on November 11, 2017.

「1978年

1978年6月12日

M7.4

宮城県沖地震」

M7.

Ó,

8

9.0

8.0

7.0

6.0

5.0

11月13日 三陸沖の地震

第4図 2017年11月13日 三陸沖の地震 Fig. 4 The earthquake off Sanriku on November 13, 2017.

2017 年 11 月 13 日 07 時24 分に三陸沖の深さ 11km (CMT 解による) でM6.0 の地震(最大震度 2)が発生した。この地震は日本海溝の海溝軸 の東側の太平洋プレート内部で発生した。発震 機構 (CMT 解)は北西-南東方向に張力軸を持 つ正断層型である。

1997 年 10 月以降の活動をみると、今回の地 震の震源付近(領域 a)では、M6.0を超える地 震が時々発生しており、東北地方太平洋沖地震 の発生以降、M7.0以上の地震が4回発生するな ど地震活動が活発化している。

1885年1月以降の活動をみると、今回の地震 の震央周辺(領域b)では、M8.0以上の地震が 2回発生しており、1933年3月3日に発生した 「昭和三陸地震」(M8.1)では、岩手県三陸町綾 里湾で28.7m(平均海水面からの高さ)の津波 が観測され、北海道から宮城県にかけての沿岸 で死者・行方不明者3,064人の甚大な被害が生 じている(「日本被害地震総覧」による)。

11月17日 福島県沖の地震

2017 年 11 月 17 日 10 時02分に福島県沖の深さ 48kmでM4.8の地震(最大震度4)が発生した。こ の地震は発震機構(CMT 解)が西北西-東南東方 向に圧力軸を持つ逆断層型で、太平洋プレートと 陸のプレートの境界で発生した。

1997 年 10 月以降の活動をみると、今回の地震 の震源付近(領域 b)では、東北地方太平洋沖地 震の発生以降、M5.0以上の地震が5回発生するな ど地震活動が活発化している。

1923年1月以降の活動をみると、今回の地震の 震央周辺(領域 c)では、1938年11月5日17時 43分にM7.5の地震が発生した。この地震により、 宮城県花淵(七ヶ浜町)で113cm(全振幅)の津 波が観測された。この地震の発生後、地震活動が 活発となり、同年11月30日までにこの地震も含 め、M6.0以上の地震が25回発生していた。これ らの地震により、死者1人、負傷者9人、住家全 壊4棟、半壊29棟などの被害が生じた(「日本被 害地震総覧」による)。

第5図 2017年11月17日 福島県沖の地震

Fig. 5 The earthquake off Fukushima Prefecture on November 17, 2017.

12月16日 岩手県沖の地震

2017 年 12 月 16 日 02 時58分に岩手県沖の深さ 52km でM5.5 の地震(最大震度4)が発生した。

この地震は、発震機構が東北東-西南西方向に圧 力軸を持つ横ずれ断層型で、太平洋プレート内部 で発生した。

1997年10月以降の活動をみると、今回の地震 の震源付近(領域b)では、M5.0を超える地震が 3回発生しており、「平成23年(2011年)東北 地方太平洋沖地震(以下、東北地方太平洋沖地 震)」の発生以降に地震活動が活発化している。

1923 年1月以降の活動をみると、今回の地震 の震央周辺(領域 c)では、1995 年1月7日に 「平成6年(1994 年)三陸はるか沖地震」の最 大余震(M7.2、最大震度5)が発生し、負傷者 96人、住家全壊17棟等の被害が生じる(被害は 「日本被害地震総覧」による)など、M7.0以上 の地震が5回発生している。

第6図 2017年12月16日 岩手県沖の地震

Fig. 6 The earthquake off Iwate Prefecture on December 16, 2017.

1月24日 青森県東方沖の地震

第7図(a) 2018年1月24日 青森県東方沖の地震

Fig. 7(a) The earthquake east of Aomori Prefecture on January 24, 2018.

1月24日青森県東方沖の地震(周辺の過去の活動)

第7図(b) つづき Fig. 7(b) Continued

2018年1月24日 青森県東方沖の地震(2001年8月14日の地震との比較)

震央分布図

強震波形 相関解析

観測点名:むつ市金曲(DF8)

2001/08/14 05:11:24 W6.4— 2018/01/24 19:51:19 W6.3— NS成分

第7図(c) つづき Fig. 7(c) Continued

2018年1月24日 青森県東方沖の地震(DD法による2001年8月14日の地震との比較②)

第7図(d) つづき Fig. 7(d) Continued

2月26日 福島県沖の地震

2018 年 2 月 26 日 01 時28 分に福島県沖の深 さ 40km でM5.8 の地震(最大震度 4)が発生し た。この地震の発震機構(CMT 解)は北北西-南南東方向に圧力軸を持つ逆断層型である。

1997年10月以降の活動をみると、今回の地 震の震源付近(領域b)では、M5.0以上の地 震が6回発生しており、「平成23年(2011年) 東北地方太平洋沖地震」(以下、東北地方太平 洋沖地震)の発生以降、地震活動が活発化し ている。

1923年1月以降の活動をみると、今回の地 震の震央周辺(領域 c)では、1938年11月5 日17時43分にM7.5の地震が発生した。この 地震により、宮城県花淵で113cm(全振幅)の 津波が観測された。この地震の発生後、地震 活動が活発となり、同年11月30日までにM6.0 以上の地震が25回発生していた。これらの地 震により、死者1人、負傷者9人、住家全壊 4棟、半壊29棟などの被害が生じた(「日本 被害地震総覧」による)。

第8図(a) 2018年2月26日 福島県沖の地震

141* 30

142

M7.4

福島県

õ

茨

城県

37° N

36* 30*

Fig. 8(a) The earthquake off Fukushima Prefecture on February 26, 2018.

1938年11月5日

17時43分

9.0

8.0

7.0

6.0 5.0

143* 30

M7. (

C

S-net観測点データを用いた自動震源(観測点補正+DD法)

の自動処理を行い(S-net観測点はP相のみ検測利用、ただし波形 のベクトル変換は未実施)、JMA2001の速度構造を用いた震源計 算で観測点補正値(下図)を求めた後、DD法を適用した。

た結果である。

<参考文献>

溜渕功史・森脇健・上野寛・東田進也(2016): ベイズ 推定を用いた一元化震源のための自動震源推定手法,験震時報,79,1-13. Waldhauser F. and W.L. Ellsworth (2000): A doubledifference earthquake location algorithm: Method and application to the northern Hayward fault, Bull. Seism. Soc. Am., 90, 1353-1368.

第8図(b) つづき Fig. 8(b) Continued

第8図(c) つづき Fig.8(c) Continued

【参考】

陸域と海域の速度構造による射出角の違い

第8図(d) つづき Fig.8 (d) Continued

3月23日

宮城県沖の地震

2018年3月23日06時32分に宮城県沖の深 さ45kmでM5.1の地震(最大震度4)が発生し た。この地震は発震機構(CMT解)が西北西-東南東方向に圧力軸を持つ逆断層型で、太平 洋プレートと陸のプレートの境界で発生し た。

1997年10月以降の活動をみると、今回の地 震の震源付近(領域b)では、「平成23年(2011 年)東北地方太平洋沖地震」(以下、東北地方 太平洋沖地震)の発生以降に地震活動が活発 化し、M5.0以上の地震が時々発生しており、 2015年5月13日にはM6.8の地震(最大震度 5強)が発生した。

1923 年1月以降の活動をみると、今回の地 震の震央周辺(領域 c)では、「1978 年宮城県 沖地震」(M7.4 最大震度 5)が発生し、死者 28 人、負傷者1,325 人、住家全壊1,183 棟等 の被害が生じる(被害は「日本被害地震総覧」 による)など、M7.0以上の地震が9回発生し ている。

領域b内のM-T図及び回数積算図

第9図(a) 2018年3月23日 宮城県沖の地震

Fig.9 (a) The earthquake off Miyagi Prefecture on March 23, 2018.

※各観測点の波形の比較で得られたコヒーレンスの中央値が0.95以上の場合、相似地震として検出している。なお、表示した相似地震 グループの一部には、複数のグループが含まれている可能性がある。また、本資料のデータは再調査の結果、修正することがある。 (参考文献)

福渕功史、中村雅基、山田安之(2014):全国を対象とした客観的な相似地震の抽出,気象研究所技術報告,72,5-16

【2015年6月定例の地震調査委員会提出資料】 2015年5月13日の宮城県沖の地震一近地強震波形による 震源過程解析(解析結果の比較)一の図に、今回の地震の震央位置を追記

●グループ毎の推定年平均すべり量等

		回数	平均M	震度		発生間隔			平均すべり量
	クループ			最大	最小	平均	最短	最大	(cm/年) ¹
	*A	4	4.92	3	3	0.38	0.24	0.58	101.29
	• B	2	4.75	3	3	0.54	0.54	0.54	69.41
	◆ C	3	4.13	з	3	0.37	0.33	0.40	78.68
今回の地震―	-> o d	2	5.20	4	4	4.98	4.98	4.98	9.56

すべい量推定には、モーメントマグニチュードと地震モーメントの関係式[Hanks and Kanamori (1979)]及び地震モーメントとすべり量 の関係式[Nadeau and Johnson(1998)]を使用。得られた積算すべり量と経過時間から最小自乗法を用いてグループ毎の年平均すべ り量を求めた。

第9図(b) つづき Fig.9 (b) Continued

宮城県沖周辺のプレート境界型メカニズム解の分布

第9図(c) つづき Fig.9(c) Continued