4-1 関東・中部地方とその周辺の地震活動(2018年11月~2019年4月) Seismic Activity in and around the Kanto and Chubu Districts (November 2018 - April 2019)

気象庁

Japan Meteorological Agency

今期間,関東・中部地方とその周辺でM4.0以上の地震は98回,M5.0以上の地震は14回発生した. このうち,関東・中部地方では,2019年3月11日に硫黄島近海で発生したM6.1の地震が最大の地震であった。

2018年11月~2019年4月のM4.0以上の地震の震央分布を第1図(a)及び(b)に示す. 主な地震活動は以下のとおりである.

- (1) 岐阜県飛騨地方(岐阜・長野県境付近)の地震活動(最大M3.1,最大震度2,第2図(a),(b)) 2018年11月23日から岐阜県飛騨地方(岐阜・長野県境付近)で地震活動が活発になり、12月31日までに震度1以上を観測する地震が51回発生した(最大震度2:6回,最大震度1:45回).このうち最大規模の地震は、11月25日05時02分に深さ4kmで発生したM3.1の地震(最大震度2)である。今回の地震の活動域の付近には焼岳があり、11月23日から焼岳の西側で活動が始まり、12月4日からは焼岳の東側でも活動が活発になった。いずれの地震も地殻内で発生した.
- (2) 茨城県南部の地震(最大M5.0, 最大震度4, 第3図(a)~(c))

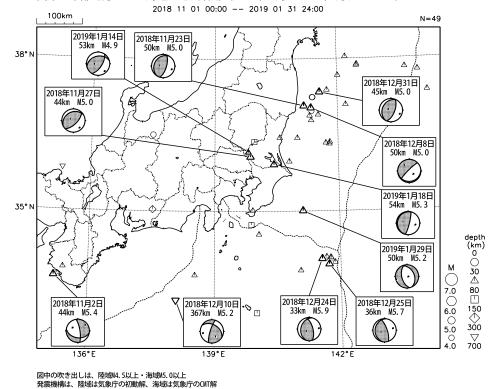
2018年11月27日08時33分に茨城県南部の深さ44kmでM5.0の地震(最大震度4)が発生した.また,2019年01月14日13時23分に茨城県南部の深さ53kmでM4.9の地震(最大震度4)が発生した.これらの地震は、発震機構が北西-南東方向に圧力軸を持つ逆断層型で、いずれもフィリピン海プレートと陸のプレートの境界で発生した.

また,これらの地震は,互いに異なる既往の相似地震グループにおいて,それぞれ最新の地震 として検出された.

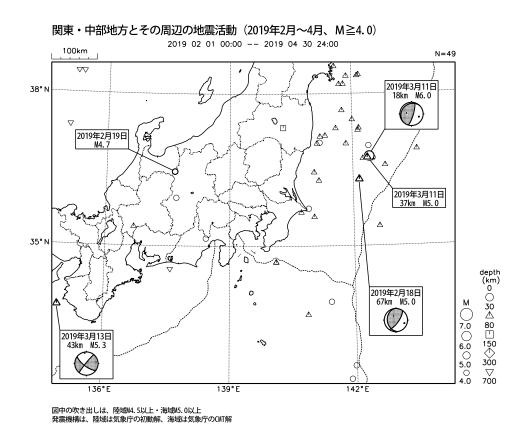
(3) 茨城県南部の地震 (M5.3, 最大震度3, 第4図)

2019年1月18日21時46分に茨城県南部の深さ54kmでM5.3の地震(最大震度3)が発生した.この地震は、発震機構が西北西-東南東方向に圧力軸を持つ逆断層型で、太平洋プレートとフィリピン海プレートの境界で発生した.

- (4) 長野県北部(長野県・富山県県境付近)の地震(M4.7,最大震度3,第5図(a)~(c)) 2019年2月19日21時04分に長野県北部のごく浅い場所でM4.7の地震(最大震度3)が発生した.この地震は、地殻内で発生した.発震機構は東西方向に圧力軸を持つ横ずれ断層型である.Double-Difference法¹⁾による詳細な震源分布から、今回の地震は、以降の地震活動域内の南側の相対的に深い場所で発生し、その後は北側の浅い方向へも活動が広がったことがわかる.
- (5) 岐阜県美濃中西部の地震 (M4.4, 最大震度4, 第6図)


2019年3月9日01時08分に岐阜県美濃中西部の深さ42kmでM4.4の地震(最大震度4)が発生した. この地震は、発震機構が東西方向に張力軸を持つ横ずれ断層型で、フィリピン海プレート内部で発生した.

(6) 硫黄島近海の地震(M6.1, 震度1以上を観測した地点なし,第7図) 2019年3月11日18時33分に硫黄島近海でM6.1の地震(震度1以上を観測した地点なし)が発生した.


参考文献

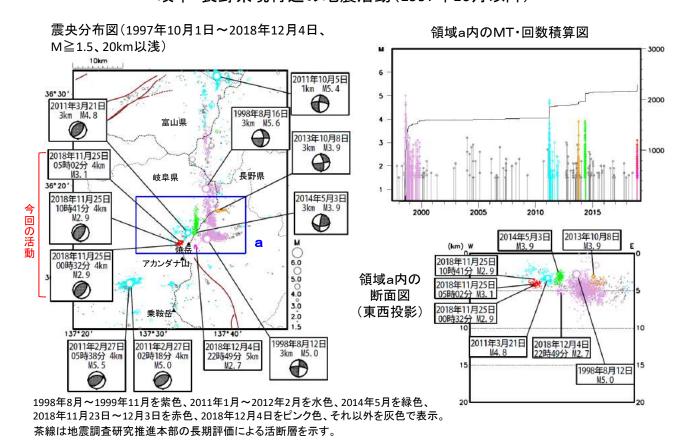
1) Waldhauser, F. and W. L. Ellsworth: A Double-Difference Earthquake Location Algorithm: Method and Application to the Northern Hayward Fault, California, Bull. Seism. Soc. AM., 90, 1353-1368 (2000).

関東・中部地方とその周辺の地震活動(2018年11月~2019年1月、M≥4.0)

第1図(a) 関東・中部地方とその周辺の地震活動(2018年11月~2019年1月, M≥4.0, 深さ≦700km) Fig. 1(a) Seismic activity in and around the Kanto and Chubu districts (November 2018 – January 2019, M≥4.0, depth≦700km).

第1図(b) つづき(2019年2月~4月, M \geq 4.0, 深さ \leq 700km) Fig. 1(b) Continued (February – April 2019, M \geq 4.0, depth \leq 700km).

11月23日からの岐阜県飛騨地方(岐阜・長野県境付近)の地震活動


情報発表に用いた震央地名は〔長野県中部〕もしくは

〔岐阜県飛騨地方〕である。 2018年11月23日から岐阜県飛騨地方(岐阜・ 長野県境付近)で地震活動が活発になり、12月31 日までに震度1以上を観測する地震が51回発生 した(最大震度2:6回、最大震度1:45回)。 このうち最大規模の地震は、11月25日05時02 分に深さ4km で発生した M3.1 の地震(最大震度 2) である。今回の地震の活動域の付近には焼岳 震央分布図 があり、11月23日から焼岳の西側で活動が始ま (1997年10月1日~2018年12月31日、 り、12月4日からは焼岳の東側でも活動が活発に 深さ0~20km、M≥1.0) なった。いずれの地震も地殻内で発生した。 2018年11月及び12月の地震を赤く表示 1997年10月以降の活動をみると、今回の地震 青色の▲は活火山を示す N=6578,463/7041 の震源付近(領域a)は、M3程度の地震が時々 今回の地震活動の 発生しており、東北地方太平洋沖地震発生後と 36° 20 最大規模の地震 2014年5月3日に、一時的に活動が活発になった。 2011年3月21日 2018年11月25日 3km M4.8 1922 年以降の活動をみると、今回の地震の震央 05時02分 4km M3. а 付近(領域b)では、M5程度の地震が時々発生 11月25日 10時41分 4km M2.9 しているものの、M6.0以上の地震は発生していな 7.0 領域a内のM-T図及び回数積算図 長野県 1500 2014年5月3日 6.0 岐阜県 3km M3.9 東北地方太平洋沖地震 5.0 36° 10' 1000 2018年11月25日 4.0 00時32分 4km M2.9 3.0 2.0 3 境峠・神谷断層帯 500 1.0 2 震央分布図中の茶色の線は、地震調査研究推進本部の長期 評価による活断層を示す 領域 a 内の時空間分布図(A-B投影) 2000 2005 2010 (2018年11月22日~12月31日、M≧0.5) 1500 (2018年11月22日~12月31日、M≧0.5 1000 В Nov 震央分布図 - 500 (1922年1月1日~2018年12月31日、 深さ0~40km、M≧4.0) N=146 0 富山県 Nov 1998年8月16日 0 領域b内のM-T図 36° 20 長野県 岐阜県 6 2011年2月27日 M5. 5 7.0 5 36° N 今回の地震活動の最大 規模の地震の震央位置 5.0 4.0 1930 1940 1950 1960 1970 1980 1990 2000 2010 137°40' 138°E

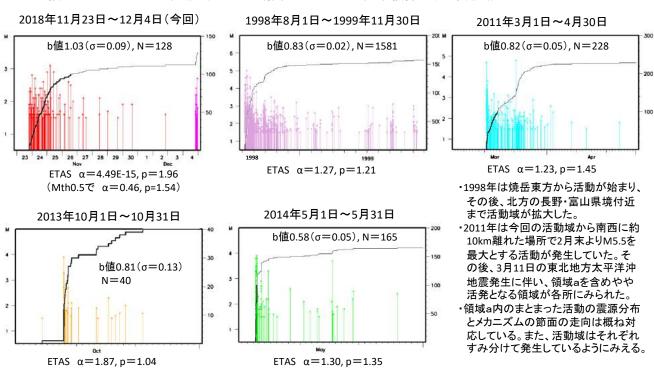
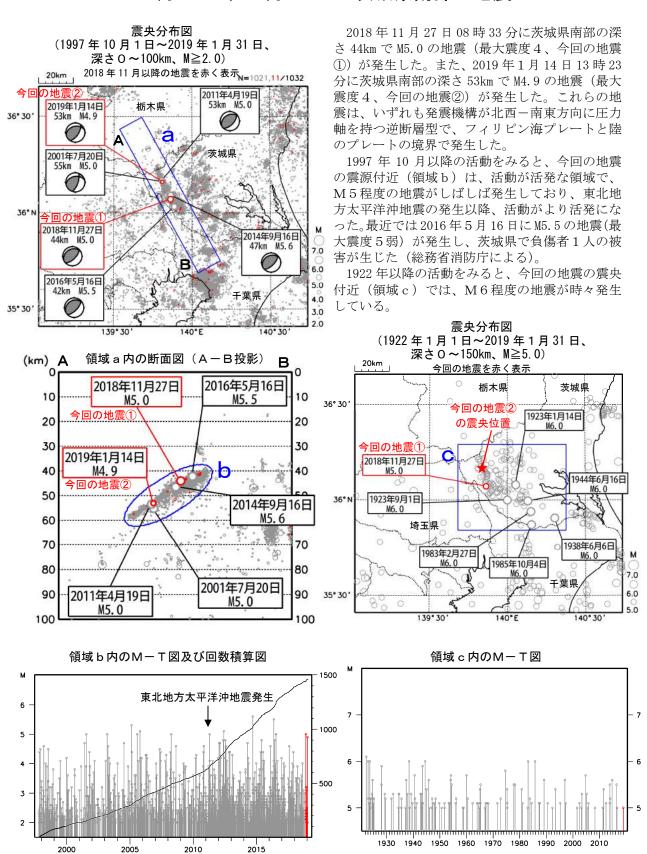

第2図(a) 2018年11月23日からの岐阜県飛騨地方の地震活動

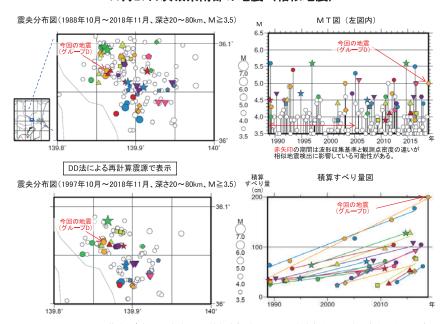
Fig. 2(a) Seismic activity in Hida region of Gifu Prefecture from November 23, 2018.

岐阜・長野県境付近の地震活動(1997年10月以降)


領域a内でまとまった活動が発生した期間におけるMT・回数積算図、地震活動パラメータ(Mth1.5)

第2図(b) つづき

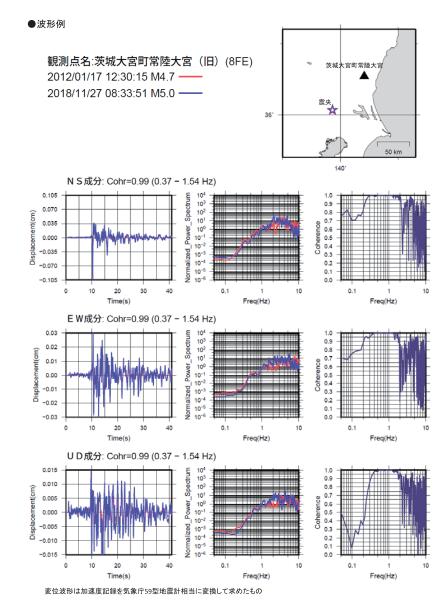
Fig. 2(b) Continued.


11月27日、1月14日 茨城県南部の地震

第3図(a) 2018年11月27日, 2019年1月14日 茨城県南部の地震

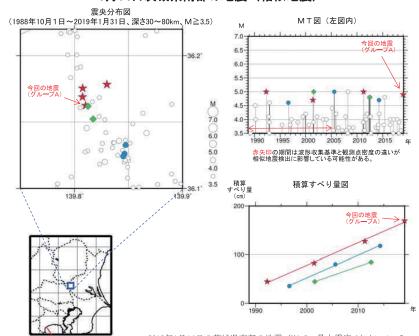
Fig. 3(a) The earthquakes in the southern part of Ibaraki Prefecture on November 12, 2018 and January 14, 2019.

11月27日茨城県南部の地震(相似地震)


2018年11月27日の茨城県南部の地震(M5.0、最大震度4)について強震波形による相関解析を行った結果、既往の相似地震グループの最新の地震として検出された(上図のグループD : 今回の地震を含め、M4.3~5.0の5地震)*。

※ 各観測点の液形の比較で得られたコヒーレンスの中央値が0.95以上の場合、相似地震として検出している。相似地震のグループ分けはコヒーレンを用いて機械的に行っており、同一グループを複数グループに分けていたり、複数グループを同一グループにしている場合がある。

(参考文献) 溜渕功史、中村雅基、山田安之(2014):全国を対象とした客観的な相似地震の抽出,気象研究所技術報告,72,5-16


●グループ毎の推定		回数	平均M	震度		発生間隔			
年平均すべり量等	グループ			最大	最小	平均	最短	最大	平均すべり量 (cm/年)
今回の地震	A BC DEFEGHIJKLM NOPORS	232532242223322232222	4.20 5.47 4.07 4.63 4.35 4.42 5.25 4.60 4.60 4.07 4.57 5.05 4.13 4.13 4.13 5.60	3 A 3 4 4 4 4 3 4 4 3 3 3 4 4 A 3 3 3 4 A	3 4 2 3 3 3 3 3 4 3 4 3 3 4 4 3 3 3 3 3	21.79 13.62 18.23 7.41 12.92 20.73 15.82 20.73 15.82 19.03 12.66 6.52 6.53 10.75 6.35 3.62 3.97 4.83 17.74	21.79 11.24 18.23 3.63 7.47 20.73 15.82 4.71 19.03 12.51 12.66 0.00 4.69 10.75 1.05 3.97 1.05 3.97 1.74	21.79 15.99 18.23 10.29 18.37 20.73 15.82 9.49 19.03 12.51 12.66 13.03 8.38 10.75 6.20 3.97 4.83 17.74	1.08 4.12 1.45 5.29 1.35 1.35 1.35 1.35 2.50 2.68 2.80 2.80 2.82 4.97 4.17 4.17 6.25 6.66 6.53 3.90

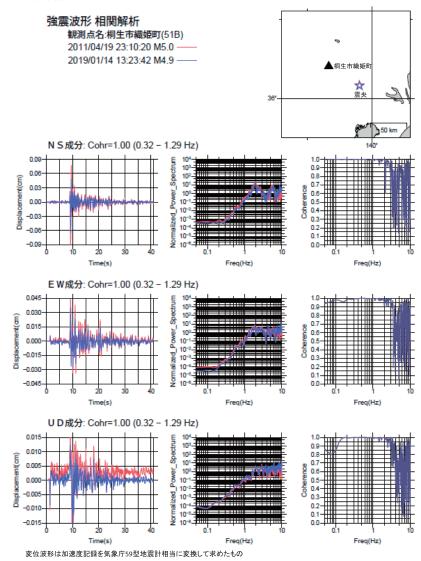
すべり量推定には、モーメントマグニチュードと地震モーメントの関係式 [Hanks and Kanamori (1979)] 及び 地震モーメントとすべり量の関係式 [Nadeau and Johnson(1998)]を使用。得られた積算すべり量と経過時間から最小自乗法を用いてグループ毎の年平均すべり量を求めた。

第3図(b) つづき Fig. 3(b) Continued.

1月14日茨城県南部の地震(相似地震)

2019年1月14日の茨城県南部の地震 (M4.8、最大震度4) について 強震波形による相関解析を行った結果、既往の相似地震グループの最 新の地震として検出された (図中のグループA★: 1992年~2011年の M4.6~M5.1の3地震と今回の地震) **。

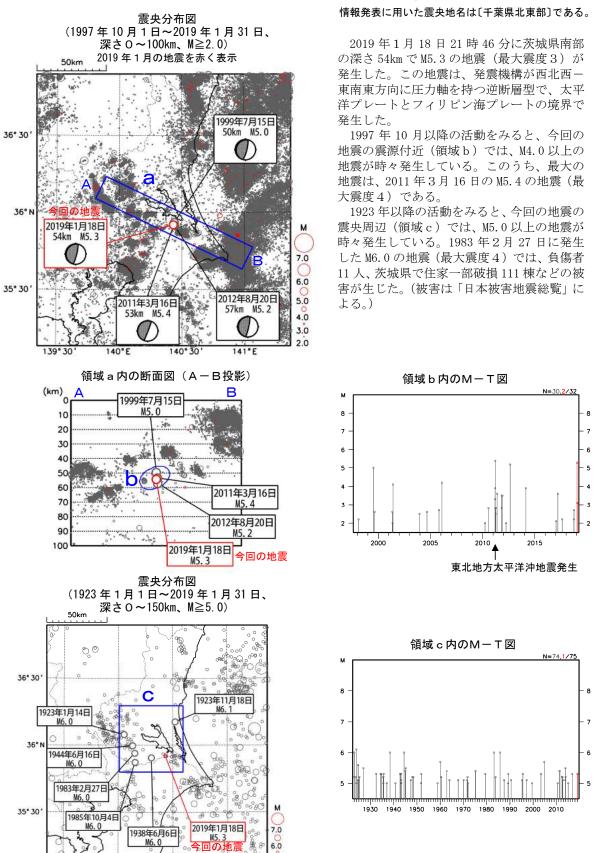
※ 各観測点の波形の比較で得られたコヒーレンスの中央値が0.95以上の場合、相似地震として検出しており、相似地震の グループ分けはコヒーレンスを用いて機械的に行っている。また、本資料のデータは再調査の結果、修正することがある。 (参考文献)


溜渕功史、中村雅基、山田安之 (2014): 全国を対象とした客観的な相似地震の抽出, 気象研究所技術報告, 72, 5-16

●グループ毎の推定年平均すべり量等

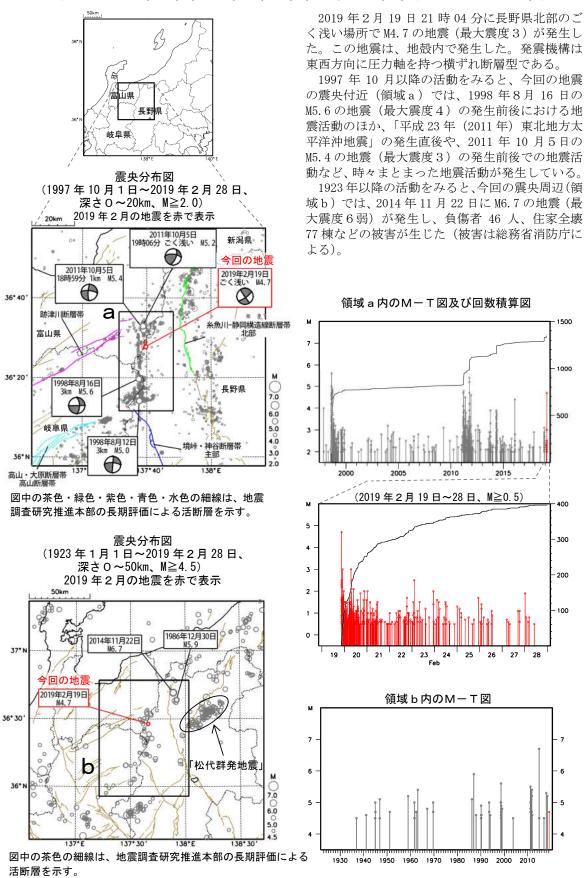
	#	— **-	平均M	震度		ş	発生間隔	平均すべり量	
	グループ	凹数		最大	最小	平均	最短	最大	平均すべり量 (cm/年)
今回の地震一	→ ★ A	4	4.90	4	4	8.92	7.74	9.88	4.64
	B	3	4.77	4	3	8.84	8.72	8.95	4.67
	◆ C	2	4.90	4	4	10.99	10.99	10.99	3.63

すべり量権定には、モーメントマグニチュードと地震モーメントの関係式[Hanks and Kanamori (1979)] 及び 地震モーメントと する (1979) [没び 地震モーメントと する (1979) [没の関係式[Nadeau and Johnson(1998)] を使用。得られた模算すべり量と軽過時間から最小自乗法を用いてグループ毎の年平均すべり量を求めた。


●波形例

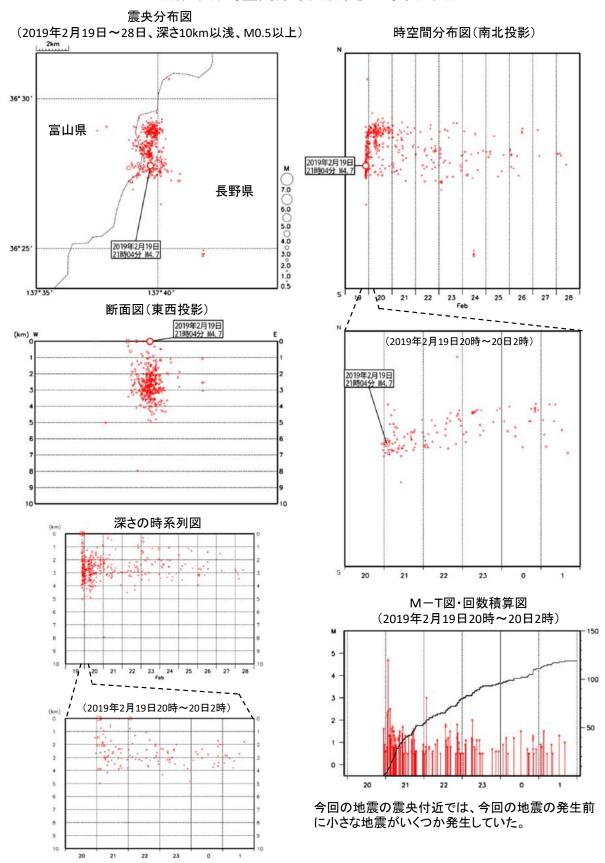
第3図(c) つづき

Fig. 3(c) Continued.


1月18日 茨城県南部の地震

第4図 2019年1月18日 茨城県南部の地震

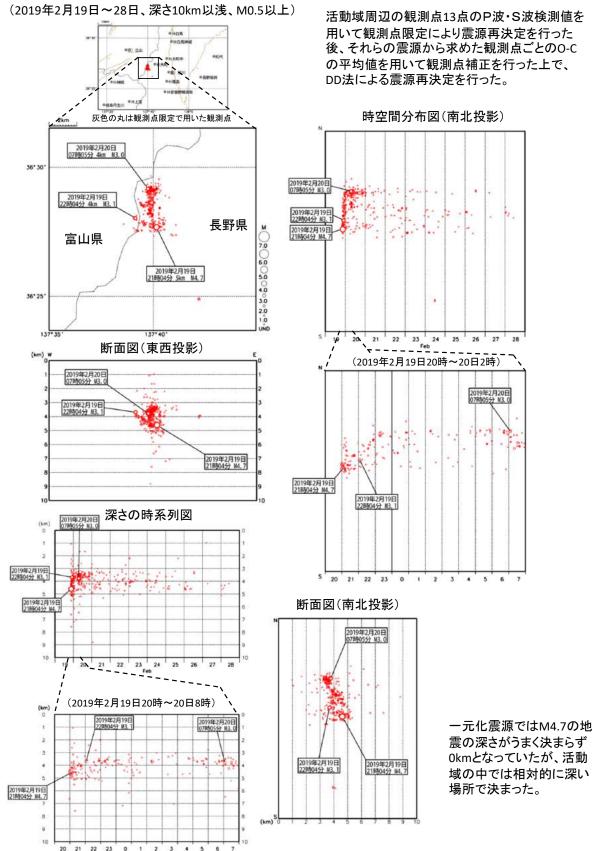
Fig. 4 The earthquake in the southern part of Ibaraki Prefecture on January 18, 2019.


2月19日 長野県北部(長野県・富山県県境付近)の地震

第5図(a) 2019年2月19日 長野県北部の地震

Fig. 5(a) The earthquake in the northern part of Nagano Prefecture on February 19, 2019.

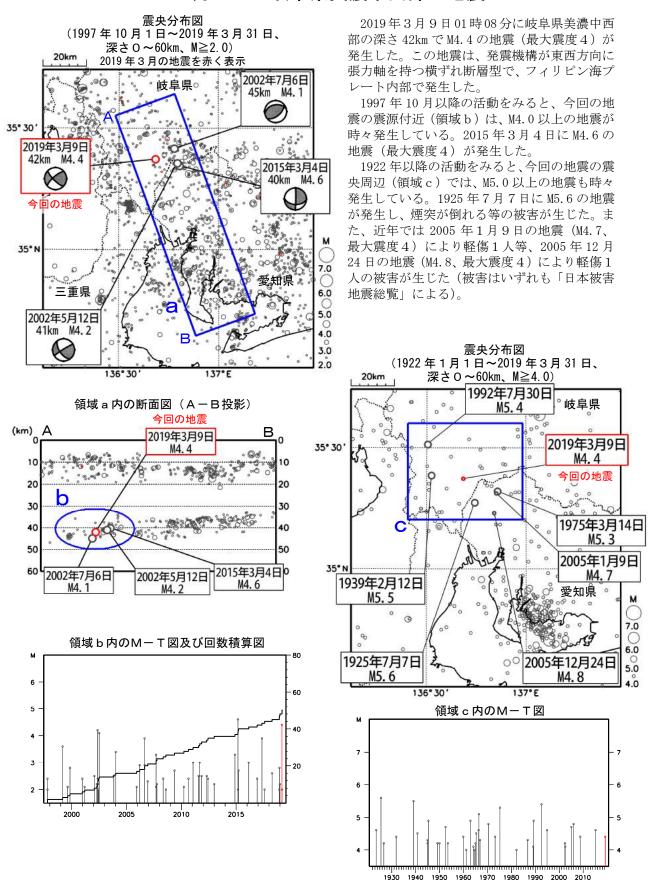
2月19日 長野県北部(長野県・富山県県境付近)の地震 (断面図、時空間分布図、深さの時系列図)



第5図(b) つづき

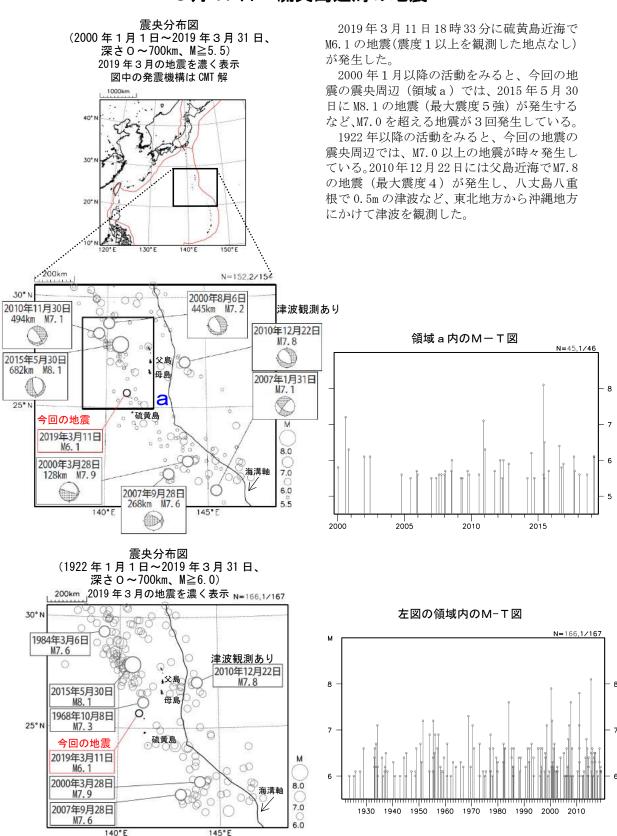
Fig. 5(b) Continued.

2月19日 長野県北部(長野県・富山県県境付近)の地震 (DD法による再決定震源)


震央分布図

第5図(c) つづき

Fig. 5(c) Continued.


3月9日 岐阜県美濃中西部の地震

第6図 2019年3月9日 岐阜県美濃中西部の地震

Fig. 6 The earthquake middle western part of Mino area in Gifu Prefecture on March 9, 2019.

3月11日 硫黄島近海の地震

※本資料中のプレート境界の位置は Bird (2003) *より引用。

*参考文献 Bird, P. (2003) An updated digital model of plate boundaries, Geochemistry Geophysics Geosystems, 4(3), 1027, doi:10.1029/2001GC000252.

第7図 2019年3月11日 硫黄島近海の地震

Fig. 7 The earthquake near Ioto Island on March 11, 2019.