8-8 紀伊半島〜四国の歪・傾斜・地下水観測結果(2018 年 11 月〜2019 年 4 月) The variation of the strain, tilt and groundwater level in the Shikoku District and Kii Peninsula, Japan (from November 2018 to April 2019)

產業技術総合研究所 Geological Survey of Japan, AIST.

産業技術総合研究所(産総研)では、東海・紀伊半島・四国の地下水等総合観測施設19点において、 歪・地下水等の観測を行っている. 観測点配置図を第1図に示す.

前回(第102巻)の資料から,HTS(愛荘香之庄)とNGR(岩出東坂本)を外し("近畿地域の地下水位・歪観測結果"の資料に移した),HKS(北勢)を加えた.その結果,この資料で報告する観測施設の数は1点減った.

第2~36図には、2018年11月~2019年4月における歪(・傾斜)・地下水位の1時間値の生データ(上線)と補正値(下線)を示す. 歪・傾斜の図において「N120E」などと示してあるのは、歪・傾斜の測定方向が北から120度東方向に回転していることを示す. 補正値は、潮汐解析プログラム BAYTAP-G[Tamura et al., 1991]によって、気圧・潮汐・不規則ノイズの影響を除去した結果である. 歪・傾斜のグラフについては、直線トレンド(1次トレンド)を除去している. なお、HKSiの補正 値は、時系列解析プログラムMR-ARによって、気圧・潮汐・降雨の影響を除去した結果である.

第99巻までの資料では,産総研で決定したエンベロープ相関法による深部低周波微動の震源の時 空間分布および個数を示していたが,2017年12月以降は微動のデータセットが不完全なため,掲載 しないことにした.微動の発生回数に応じて第2~38図に網掛けを行っていたが,それも中止した. 第94巻の資料から,グラフに記載しているdepth(深度)の数値を,より正確な数値へ更新した.

(北川有一・板場智史・松本則夫・落唯史・木口努)

参考文献

Tamura, Y., T. Sato, M. Ooe and M. Ishiguro, A procedure for tidal analysis with a Bayesian information criterion, *Geophys. J. Int.*, **104**, 507-516, 1991.

第1表 地下水等総合観測点の一覧. Table.1 List of the observation sites.

3文字コード (変更無し)	旧名称		新名称	新名称 ふりがな	市区町村	×
TYS	豊田下山	\rightarrow	豊田神殿	とよたかんどの	愛知県豊田市	2,3
NSZ	西尾善明	変更無し	西尾善明	にしおぜんみょう	愛知県西尾市	4,5
TYE	豊橋東	\rightarrow	豊橋多米	とよはしため	愛知県豊橋市	6,7
HKS	北勢	変更無し	北勢	ほくせい	三重県いなべ市	9
ANO	安濃	\rightarrow	津安濃	つあのう	三重県津市	8,9
ITA	飯高赤桶	\rightarrow	松阪飯高	まつさかいいたか	三重県松阪市	10,11
MYM	海山	\rightarrow	紀北海山	きほくみやま	三重県北牟婁郡紀北町	12,13
ICU	井内浦	\rightarrow	熊野磯崎	くまのいそざき	三重県熊野市	14,15
HGM	本宮三越	\rightarrow	田辺本宮	たなべほんぐう	和歌山県田辺市	16,17
KST	串本津荷	変更無し	串本津荷	くしもとつが	和歌山県東牟婁郡串本町	18,19
BND	板東	\rightarrow	鳴門大麻	なるとおおあさ	徳島県鳴門市	20
ANK	阿南桑野	変更無し	阿南桑野	あなんくわの	徳島県阿南市	21,22
MUR	室戸	\rightarrow	室戸岬	むろとみさき	高知県室戸市	23,24
KOC	高知市	\rightarrow	高知五台山	こうちごだいさん	高知県高知市	25,26
SSK	須崎	\rightarrow	須崎大谷	すさきおおたに	高知県須崎市	27,28
TSS	土佐清水	\rightarrow	土佐清水松尾	とさしみずまつお	高知県土佐清水市	29,30
UWA	宇和	\rightarrow	西予宇和	せいようわ	愛媛県西予市	31,32
MAT	松山	\rightarrow	松山南江戸	まつやまみなみえど	愛媛県松山市	33,34
NHK	新居浜黒島	変更無し	新居浜黒島	にいはまくろしま	愛媛県新居浜市	35,36

- 第1図 地下水等総合観測点の分布図(●,■,▲,▼). 観測点の一覧は第1表に示す.●はデジタル方式の石井 式歪計・傾斜計を併設している新規観測点,■はGladwin式歪計・ミツトヨ式傾斜計を併設している新規観 測点,▲はアナログ方式の石井式歪計を併設している既存の観測点.▼は既存の地下水観測点.灰色の領域 は短期的SSE及び深部低周波微動が定常的に発生していると考えられる地域.
- Fig. 1 Location of the observation sites (●, ■, ▲, ▼). The list of the observation sites is shown in Table.1. Circles (●) show the new observation sites at which the Ishii type multi-component strainmeter and the tiltmeter (digital type) are installed. Squares (■) show the new observation sites at which the Gladwin type multi-component strainmeter and the Mitsutoyo type tiltmeter are installed. The triangle (▲) shows the old observation site at which the Ishii type multi-component strainmeter (analog type) is installed. The reversed triangle (▼) shows the old groundwater observation site. The gray mesh shows the area which is thought that short-term slow slip events and deep low frequency tremors occur stationarily.

第2図 TYS における歪観測結果 (2018年11月~2019年4月) Fig. 2 Observed strains at the TYS observation site from November 2018 to April 2019.

第4図 NSZ における歪観測結果 (2018 年 11 月~2019 年 4 月) Fig. 4 Observed strains at the NSZ observation site from November 2018 to April 2019.

- 第3図 TYS における傾斜・地下水位観測結果 (2018年11月~ 2019年4月)
- Fig. 3 Observed tilts and groundwater levels at the TYS observation site from November 2018 to April 2019.

- 2019 ± 4.5
- Fig. 5 Observed tilts and groundwater levels at the NSZ observation site from November 2018 to April 2019.

第6図 TYE における歪観測結果 (2018年11月~2019年4月) Fig. 6 Observed strains at the TYE observation site from November 2018 to April 2019.

第8図 ANO における歪観測結果 (2018 年 11 月~2019 年 4 月) Fig. 8 Observed strains at the ANO observation site from November 2018 to April 2019.

- 第7図 TYE および TYH における傾斜・地下水位観測結果 (2018 年 11 月~2019 年 4 月)
- Fig. 7 Observed tilts and groundwater levels at the TYE and the TYH observation site from November 2018 to April 2019.

- 第9図 ANO および HKS における傾斜・地下水位観測結果 (2018 年 11 月~2019 年 4 月)
- Fig. 9 Observed tilts and groundwater levels at the ANO and the HKS observation site from November 2018 to April 2019.

第10図 ITA における歪観測結果 (2018 年 11 月〜2019 年 4 月) Fig. 10 Observed strains at the ITA observation site from November 2018 to April 2019.

- 第11 図 ITA における傾斜・地下水位観測結果 (2018 年 11 月~ 2019 年 4 月)
- Fig. 11 Observed tilts and groundwater levels at the ITA observation site from November 2018 to April 2019.

第12図 MYM における歪観測結果 (2018 年 11 月~2019 年 4 月) Fig. 12 Observed strains at the MYM observation site from November 2018 to April 2019.

- 第13 図 MYM における傾斜・地下水位観測結果 (2018 年 11 月 ~2019 年 4 月)
- Fig. 13 Observed tilts and groundwater levels at the MYM observation site from November 2018 to April 2019.

Tilt and groundwater level at MYM (時間値) (2018/11/01 00:00 - 2019/05/01 00:00 (JST))

第14図 ICU における歪観測結果 (2018 年 11 月~2019 年 4 月) Fig. 14 Observed strains at the ICU observation site from November 2018 to April 2019.

第16図 HGM における歪観測結果 (2018 年 11 月~2019 年 4 月) Fig. 16 Observed strains at the HGM observation site from November 2018 to April 2019.

- 第15図 ICUにおける傾斜・地下水位観測結果 (2018 年 11 月~ 2019 年 4 月)
- Fig. 15 Observed tilts and groundwater levels at the ICU observation site from November 2018 to April 2019.

- 第17図 HGM における傾斜・地下水位観測結果 (2018 年 11 月 ~2019 年 4 月)
- Fig. 17 Observed tilt and groundwater levels at the HGM observation site from November 2018 to April 2019.

Tilt and groundwater level at HGM (時間値) (2018/11/01 00:00 - 2019/05/01 00:00 (JST))

第18図 KST における歪観測結果 (2018 年 11 月~2019 年 4 月) Fig. 18 Observed strains at the KST observation site from November 2018 to April 2019.

第20図 BNDにおける歪・地下水位観測結果 (2018 年 11 月~ 2019 年 4 月)

Fig. 20 Observed strains and groundwater level at the BND observation site from November 2018 to April 2019.

- 第19図 KSTにおける傾斜・地下水位観測結果 (2018 年 11 月~ 2019 年 4 月)
- Fig. 19 Observed tilts and groundwater levels at the KST observation site from November 2018 to April 2019.

第22図 ANK における傾斜・地下水位観測結果 (2018 年 11 月~ 2019 年 4 月)

Fig. 22 Observed tilts and groundwater levels at the ANK observation site from November 2018 to April 2019.

Fig. 24 Observed tilts and groundwater levels at the MUR observation site from November 2018 to April 2019.

- 第26図 KOCにおける傾斜・地下水位観測結果 (2018年11月~ 2019年4月)
- Fig. 26 Observed tilts and groundwater levels at the KOC observation site from November 2018 to April 2019.

- 第28図 SSK における傾斜・地下水位観測結果 (2018 年 11 月~ 2019 年 4 月)
- Fig. 28 Observed tilts and groundwater levels at the SSK observation site from November 2018 to April 2019.

第 27 図 SSK における歪観測結果 (2018 年 11 月~2019 年 4 月) Fig. 27 Observed strains at the SSK observation site from November 2018 to April 2019.

第 29 図 TSS における歪観測結果 (2018 年 11 月~2019 年 4 月) Fig. 29 Observed strains at the TSS observation site from November 2018 to April 2019.

第 30 図 TSS における傾斜・地下水位観測結果 (2018 年 11 月~ 2019年4月)

Fig. 30 Observed tilts and groundwater levels at the TSS observation site from November 2018 to April 2019.

~2019年4月)

第31図 UWAにおける歪観測結果 (2018年11月~2019年4月) Fig. 31 Observed strains at the UWA observation site from November 2018 to April 2019.

Crustal strains at MAT (時間値) (2018/11/01 00:00 - 2019/05/01 00:00 (JST))

- 第34図 MATにおける傾斜・地下水位観測結果 (2018 年 11 月~ 2019 年 4 月)
- Fig. 34 Observed tilts and groundwater levels at the MAT observation site from November 2018 to April 2019.

Fig. 36 Observed tilts and groundwater levels at the NHK observation site from November 2018 to April 2019.

第35図 NHK における歪観測結果 (2018 年 11 月~2019 年 4 月) Fig. 35 Observed strains at the NHK observation site from November 2018 to April 2019.