2-1 北海道地方とその周辺の地震活動(2019年11月~2020年4月) Seismic Activity in and around the Hokkaido District (November 2019 – April 2020)

気象庁 札幌管区気象台 Sapporo Regional Headquarters, JMA

今期間,北海道地方とその周辺で M4.0 以上の地震は 98 回, M5.0 以上は 10 回, M6.0 以上は 1 回発生した. このうち最大は,2020 年 2 月 13 日に択捉島南東沖で発生した M7.2 の地震であった. 2019 年 11 月~2020 年 4 月の M4.0 以上の地震の震央分布を第 1 図 (a) 及び (b) に示す. 主な地震活動は以下のとおりである.

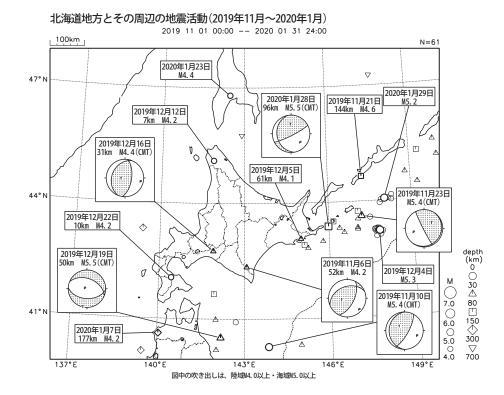
(1) 北海道東方沖の地震 (M5.4, 最大震度 3, 第 2 図)

2019年11月23日21時58分に北海道東方沖でM5.4の地震(最大震度3)が発生した. この地震の発震機構(CMT解)は、東北東-西南西方向に圧力軸を持つ型であった.

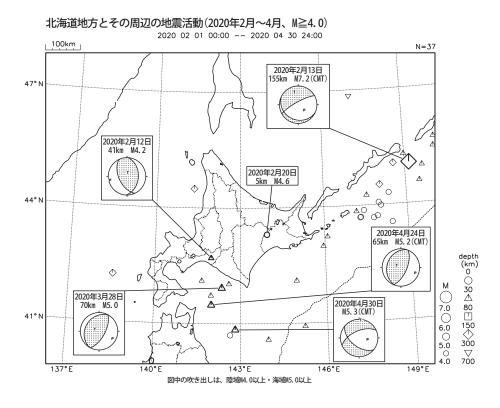
- (2) 宗谷地方北部の地震 (M4.2, 最大震度 5 弱, 第 3 図 (a), (b)) 2019年12月12日01時09分に宗谷地方北部の深さ7kmでM4.2の地震(最大震度5弱)が発生した. この地震は地殻内で発生した.
- (3) 根室半島南東沖の地震(M5.5, 最大震度 4, 第 4 図)

2020年1月28日10時36分に根室半島南東沖の深さ96kmでM5.5の地震(最大震度4)が発生した. この地震は太平洋プレート内部(二重地震面の下面)で発生した.この地震の発震機構(CMT解)は, 南北方向に張力軸を持つ型であった.

(4) 択捉島南東沖の地震 (M7.2, 最大震度 4, 第5図)

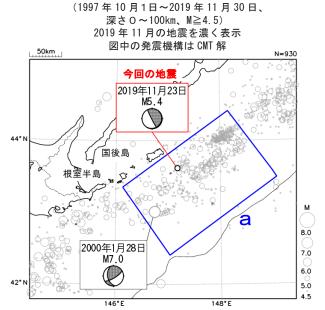

2020年2月13日19時33分に択捉島南東沖の深さ155kmでM7.2の地震(最大震度4)が発生した. この地震は太平洋プレート内部で発生した.この地震の発震機構(CMT解)は、北北西-南南東方向に張力軸を持つ型であった.

(5) 釧路地方中南部の地震(M4.6, 最大震度 3, 第 6 図)


2020年2月20日00時50分に釧路地方中南部の深さ5kmでM4.6の地震(最大震度3)が発生した. この地震は地殻内で発生した.

(6) 浦河沖の地震 (M5.0, 最大震度 3, 第 7 図 (a), (b))

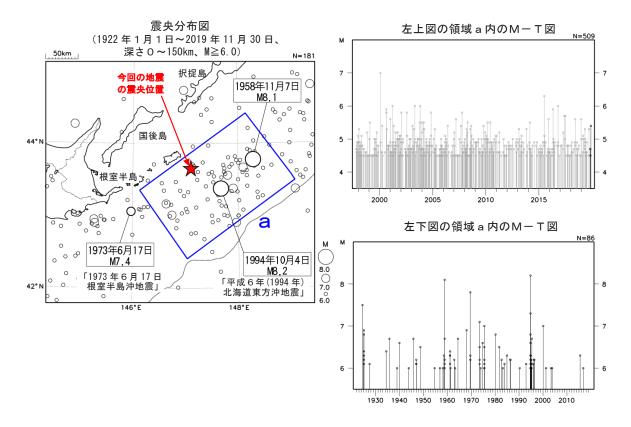
2020年3月28日09時57分に浦河沖の深さ70kmでM5.0の地震(最大震度3)が発生した. この地震の発震機構は、西北西-東南東方向に圧力軸を持つ逆断層型で、太平洋プレートと陸のプレートの境界で発生した.この地震は、既往の相似地震グループの最新の地震として検出された.



第 1 図 (a) 北海道地方とその周辺の地震活動(2019 年 11 月~ 2020 年 1 月, $M \ge 4.0$,深さ $\le 700 \text{ km}$) Fig. 1(a) Seismic activity in and around the Hokkaido district (November 2019 – January 2020, $M \ge 4.0$, depth $\le 700 \text{ km}$).

第 1 図 (b) つづき (2020 年 2 月~ 4 月, $M \ge 4.0$, 深さ $\le 700 \text{ km}$) Fig. 1(b) Continued (February 2020 – April, $M \ge 4.0$, depth $\le 700 \text{ km}$).

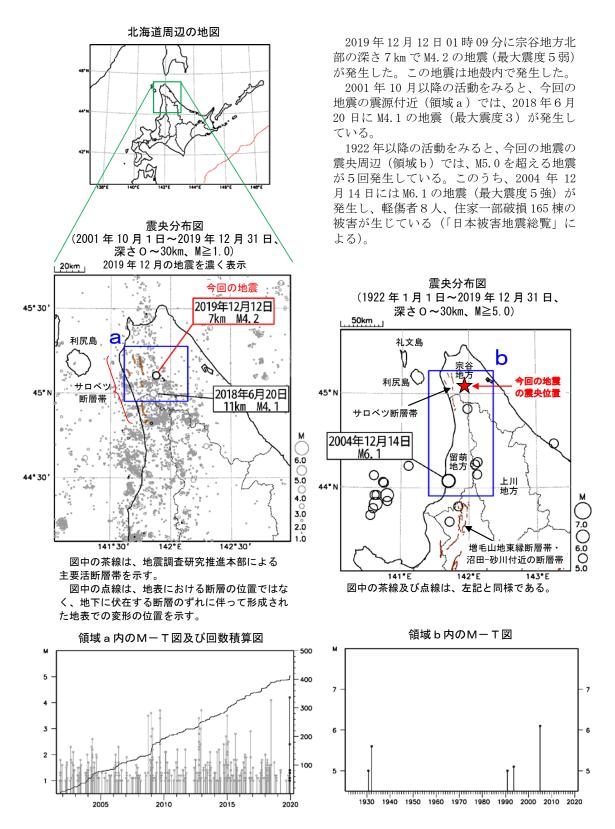
11月23日 北海道東方沖の地震



震央分布図

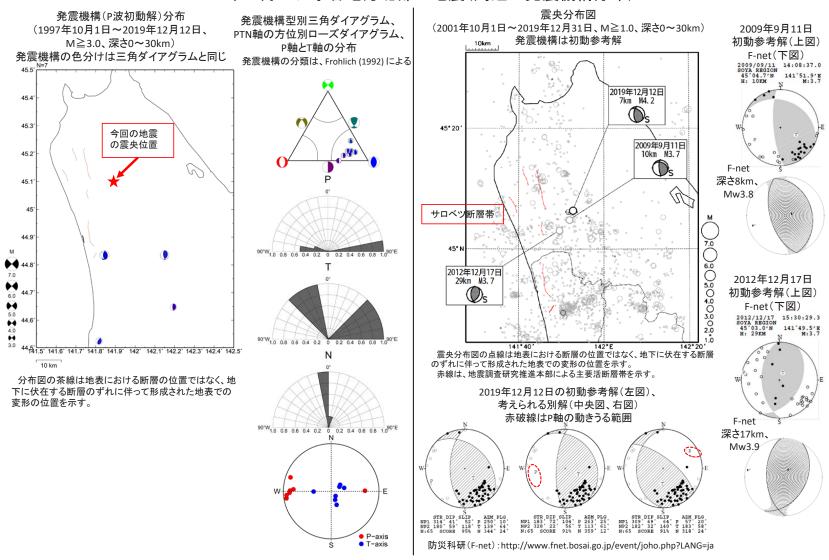
2019年11月23日21時58分に北海道東方沖でM5.4の地震(最大震度3)が発生した。この地震は発震機構(CMT解)が東北東-西南西方向に圧力軸を持つ型である。

1997 年 10 月以降の活動をみると、今回の地震の震央周辺(左上図の領域 a)では、M5.0以上の地震が度々発生しており、最大規模の地震は、2000 年 1 月 28 日に発生した M7.0 の地震(最大震度 4)で、負傷者 2人の被害が生じた(総務省消防庁による)。

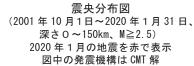

1922 年以降の活動をみると、左下図の領域 a では、M7.0以上の地震が時々発生しており、M8.0以上の地震が 2回発生している。1994 年 10 月 4 日に発生した「平成6年(1994年) 北海道東方沖地震」(M8.2、最大震度6)では、根室市花咲で168cmの津波を観測するなど、北海道から沖縄県にかけて津波を観測した。この地震により、北海道では負傷者436人、住家被害7,519棟等の被害が生じた(「平成6・7年災害記録(北海道)」による)。

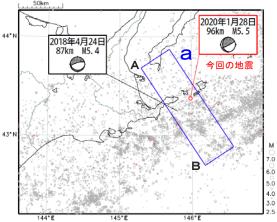
第2図 2019年11月23日 北海道東方沖の地震

Fig. 2 The earthquake east off Hokkaido on November 23, 2019.


12月12日 宗谷地方北部の地震

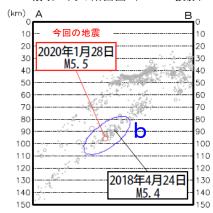
第3図(a) 2019年12月12日 宗谷地方北部の地震


Fig. 3(a) The earthquake in the northern part of Souya region on December 12, 2019.

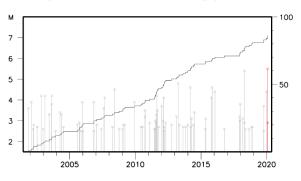

2019年12月12日宗谷地方北部の地震(周辺の発震機構分布)

第3図(b) つづき Fig. 3(b) Continued.

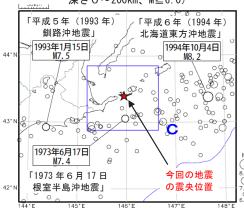
1月28日 根室半島南東沖の地震

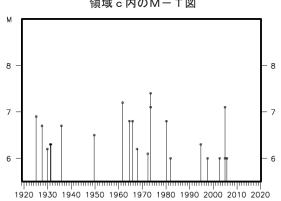


2020年1月28日10時36分に根室半島南東沖の 深さ96kmでM5.5の地震(最大震度4)が発生し た。この地震は発震機構(CMT解)が南北方向に 張力軸を持つ型で、太平洋プレート内部(二重 地震面の下面) で発生した地震である。

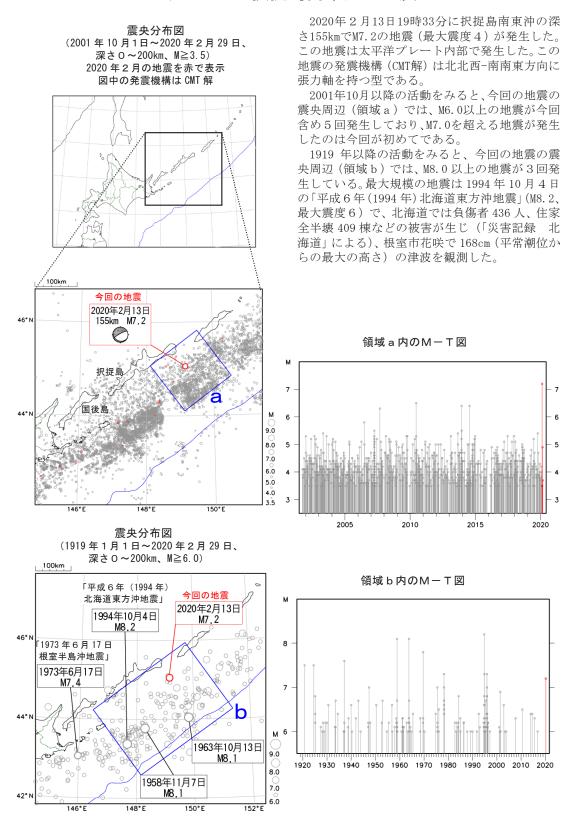

2001年10月以降の活動をみると、今回の地震の 震源付近(領域b)では、2018年4月24日にM5.4 の地震(最大震度4)が発生した。

1919 年以降の活動をみると、今回の地震の震 央周辺(領域 c)では、M7.0以上の地震が4回発 生している。最大規模の地震は「1973年6月17 日根室半島沖地震」(M7.4、最大震度5)で、北 海道では負傷者 28 人、住家被害 5,153 棟などの 被害が生じ、根室市花咲で 280cm (平常潮位から の最大の高さ)の津波を観測した(「昭和48・49 年災害記録 北海道」による)。



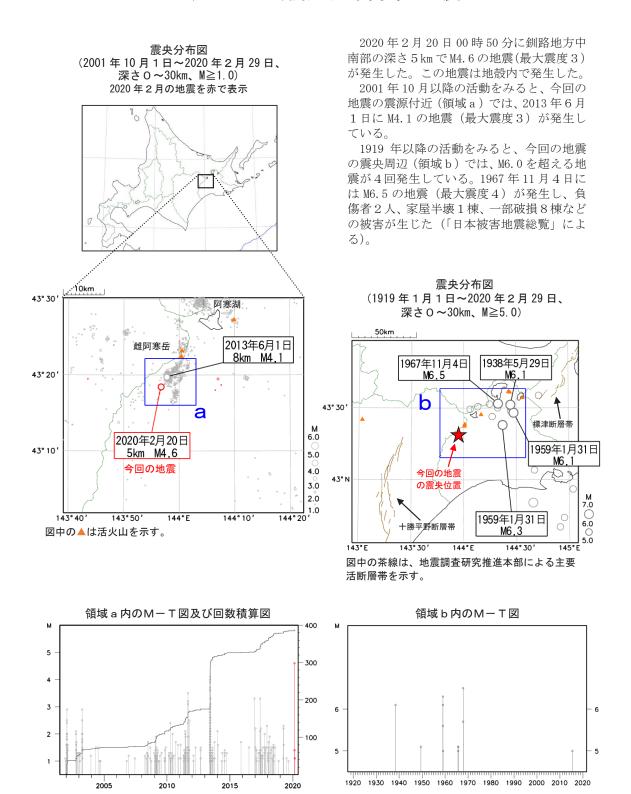

領域b内のM-T図及び回数積算図

震央分布図 (1919年1月1日~2020年1月31日、 深さ0~200km、M≥6.0)


領域c内のM-T図

第4図 2020年1月28日 根室半島南東沖の地震

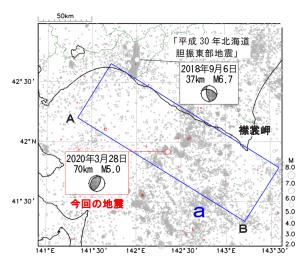
Fig. 4 The earthquake southern east off the Nemuro Peninsula on January 28, 2020.


2月13日 択捉島南東沖の地震

第5図 2020年2月13日 択捉島南東沖の地震

Fig. 5 The earthquake southern east off Etorofu Island on February 13, 2020.

2月20日 釧路地方中南部の地震

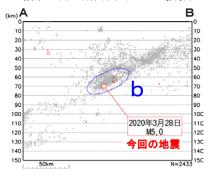


第6図 2020年2月20日 釧路地方中南部の地震

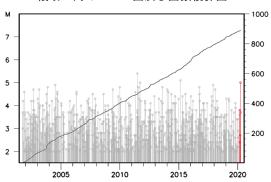
Fig. 6 The earthquake in the middle southern part of Kushiro region on February 20, 2020.

3月28日 浦河沖の地震

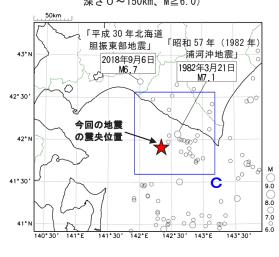
震央分布図 (2001年10月1日~2020年3月31日、 深さ0~150km、M≥2.0) 2020年3月の地震を赤で表示

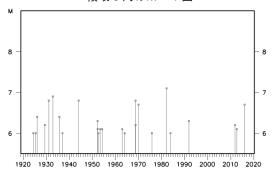


2020年3月28日09時57分に浦河沖の深さ70kmでM5.0の地震(最大震度3)が発生した。この地震は、発震機構が西北西-東南東方向に圧力軸を持つ逆断層型で、太平洋プレートと陸のプレートの境界で発生した。

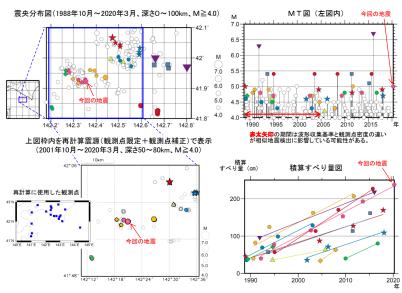

2001年10月以降の活動をみると、今回の地震の震源付近(領域b)では、M5程度の地震がしばしば発生している。

1919 年以降の活動をみると、今回の地震の震 央周辺(領域 c)では、M6.0 以上の地震がしば しば発生している。「昭和 57 年 (1982 年) 浦河 沖地震」(M7.1、最大震度 6)では、北海道で重 軽傷者 167 人、住家全半壊 41 棟などの被害が生 じた(「昭和 57・58 年災害記録」(北海道、1984) による)。


領域 a 内の断面図(A-B投影)


領域b内のM-T図及び回数積算図

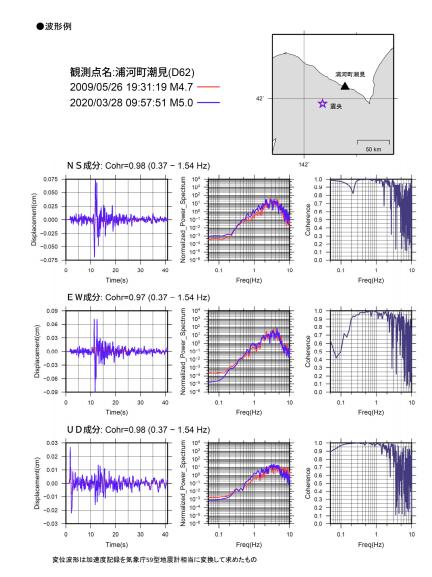
震央分布図 (1919年1月1日~2020年3月31日、 深さO~150km、M≧6.0)


領域c内のM-T図

第7図(a) 2020年3月28日 浦河沖の地震

Fig. 7(a) The earthquake off Urakawa on March 28, 2020.

3月28日 浦河沖の地震(相似地震)


2020年3月28日の浦河沖の地震(M5.0、最大震度3)について強震波形による相関解析を行った結果、既往の相似地震グループの最新の地震として検出された(上図の ♠ 、今回の地震を含めM4.7~5.0の6地震)*。
※ 各観測点の波形の比較で得られたコヒーレンスの中央値が0.95以上の場合、相似地震として検出している。また、相似地震のグループ分けはコヒーレンスを用いて機械的に行っている。

溜渕功史・中村雅基・山田安之 (2014): 全国を対象とした客観的な相似地震の抽出, 気象研究所技術報告, 72, 5-16.

●推定年平均すべり量等

	グループ	回数	平均M	震度		発生間隔			平均すべり量
				最大	最小	平均	最短	最大	· (cm/年) —
今回の地震・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	★ A	4	4.90	3	3	9.65	6.35	15.53	4.18
	B	4	4.42	3	2	4.64	3.30	7.30	6.51
	◆ C	2	4.60	2	2	5.27	5.27	5.27	6.35
	D	5	4.86	4	2	5.28	0.41	9.20	6.71
	▼ E	2	6.50	Α	4	24.13	24.13	24.13	5.05
	> 🏚 F	6	4.78	3	2	5.61	2.77	7.72	6.68
	■ G	3	5.30	4	3	10.72	3.66	17.79	4.33
	A H	2	4.40	3	3	11.13	11.13	11.13	2.52
	I	4	5.40	4	3	6.89	4.82	8.63	8.40
	★ J	3	4.63	3	3	8.10	4.43	11.77	4.24
	K	2	4.80	3	3	6.74	6.74	6.74	5.92
	♦ L	2	4.40	3	3	3.23	3.23	3.23	9.23

すべり量推定には、モーメントマグニチュードと地震モーメントの関係式[Hanks and Kanamori (1979)]及び 地震モーメントとすべり量の関係式 [Nadeau and Johnson(1998)]を使用。得られた積算すべり量と経過時間から最小自乗法を用いてグループ毎の年平均すべり量を求めた。

第7図(b) つづき Fig. 7(b) Continued.