12-4 力学モデルに立脚した第2ステージの地震による強震動予測のための震源モデル

Seismic source model for predicting strong motions from second-stage earthquakes based on mechanical model

壇 一男 (清水建設技術研究所)

Kazuo Dan (Institute of Technology, Shimizu Corporation)

地表断層を伴わない第1ステージの地震(1995年兵庫県南部地震や1989年米国ロマプリータ地 震など)では周期約1秒の大振幅記録が得られ,甚大な被害をもたらしている。

地震調査研究推進本部では,1995年兵庫県南部地震での周期約1秒の大振幅記録が再現できる 手法を,強震動予測のための「レシピ」としてとりまとめ,全国の主な活断層の地震による強震動 を予測している。このとき,断層のモデル化は,深さ2,3 km ~ 20 km 程度の地震発生層内に限ら れる。

第1図に示す地表断層を伴う第2ステージや第3ステージの地震(1994年米国 Landers 地震や 2016年熊本地震など)では周期約3秒の大振幅記録が得られ,永久変位も観測されている。これ らの波は,深さ2,3kmより浅い断層面(地震発生層より浅い層)から放出されたと考えられている。

第2図~第11図に示すような、地震発生層よりも浅い断層面も考慮した強震動予測のための断層のモデル化手法の確立が必要である。第12図~第14図に地殻内地震の規模別断層イメージを示す。

同様の課題は、大津波を励起する沈み込み帯のプレート境界地震にもある。第15図〜第17図に 沈み込み帯におけるプレート境界地震の規模別断層イメージを示す。

参考文献

- 1) Dan et al., 7ICEGE, 1952-1960, 2019.
- 2) 納所・他, 日本建築学会大会, 構造 II, 759-760, 2018.
- 3) 壇, 強震動予測に用いられる学術用語としての「アスペリティ」について, *日本建築学会構造 系論文集*(投稿中), 2020.

第2図 2016年熊本地震への適用例(深部断層)¹⁾

Fig. 2 Example of the 2016 Kumamoto earthquake (deep fault)¹⁾.

第3図 深部断層のすべり速度時間関数¹⁾

Fig. 3 Slip velocity time functions on the deep fault¹⁾ $(\text{deep fault})^{1)}$.

	small-slip area		large-slip area	small-slip area	
depth 3km	1.4m, 35.9cm/s	1.4m, 61.1cm	5.1m, 297cm/s	1.4m, 61.	lcm/s
seismogenic layer			asperity		-
	aspenty		12.2MPa		
	12.2MPa	asperity	5.1m		
	4.8m	12.2MPa	595cm/s		-
	478cm/s	3.6m		background	-
	first hypocenter	489cm/s		2.0MPa	
	1.2MPa	econd hypocent	er	1.4m	depth
depth 17km	1.4m, 71.8cm/s			123cm/s	17kn

第4図 2016年熊本地震への適用例(全断層)¹⁾

Fig. 4 Example of the 2016 Kumamoto earthquake (entire fault)¹⁾.

第5図 浅部断層のすべり速度時間関数¹⁾ Fig. 5 Slip velocity time functions on the shallow fault¹⁾.

(obs: observed, D: deep part only, D+S: deep and shallow parts)

第6図 益城(断層線距離2km)での速度波形¹⁾ Fig. 6 elocity motions at Mashiki Station (2 km from the fault trace)¹⁾.

(obs: observed, D: deep part only, D+S: deep and shallow parts)

第8図 西原村(断層線距離700m)での速度波形¹⁾

(obs: observed, D: deep part only, D+S: deep and shallow parts)

第7図 益城(断層線距離2km)での変位波形¹⁾

Fig. 7 Displacements at Mashiki Station (2 km from fault trace)¹⁾.

(obs: observed, D: deep part only, D+S: deep and shallow parts)

第9図 西原村(断層線距離700m)での変位波形¹⁾ Fig. 9 Displacements at Nishihara Station (700 m from the fault trace)¹⁾

200

-200

0

0

10 20 30 40

Time (s)

UD

第10図 ごく表層のすべり量を2mに変えた断 層モデル²⁾

(D=2.0m)

大すべり域

(D=4.0m)

アスペリティ1

(D=5.0m)

小すべり域

(D=0.82m)

背景領域

(D=1.03m)

Fig. 10 Fault model with the slip of 2 m on the veryshallow fault²⁾.

第11図 西原村での評価結果²⁾ Fig. 11 Synthetics at Nishihara Station²⁾.

第 12 図 Mw 6 クラスの地殻内地震³⁾

Fig. 12 Crustal earthquake of Mw 6 class³⁾.

high-stress-drop large-slip area = SMGA

第 14 図 Mw 7 クラス以上の地殻内地震³⁾ Fig. 14 Crustal earthquake of Mw 7 class and beyond.

第13図 Mw 6.5 クラスの地殻内地震³⁾Fig. 13 Crustal earthquake of Mw 6.5 class³⁾.

high-stress-drop large-slip area = SMGA large-slip area

- 第15図 *Mw* 8 クラスの沈み込み帯のプレート境 界地震³⁾
- Fig. 15 Subduction plate-boundary earthquake of *Mw* 8 class.

high-stress-drop large-slip area = SMGA

- 第 16 図 Mw 8.5 クラスの沈み込み帯のプレート 境界地震³⁾
- Fig. 16 Subduction plate-boundary earthquake of *Mw* 8.5 class.

- 第 17 図 *Mw* 9 クラスの沈み込み帯のプレート境 界地震³⁾
- Fig. 17 Subduction plate-boundary earthquake of *Mw* 9 class.