10-1 九州地方とその周辺の地震活動(2021 年 11 月~ 2022 年 4 月) Seismic Activity in and around the Kyushu District (November 2021 - April 2022)

気象庁 福岡管区気象台 Fukuoka Regional Headquarters, JMA

今期間,九州地方とその周辺で M4.0 以上の地震は 87 回, M5.0 以上の地震は 16 回発生した. こ のうち最大のものは, 2022 年 1 月 22 日に日向灘で発生した M6.6 の地震である.

2021 年 11 月~2022 年 4 月の M4.0 以上の地震の震央分布を第 1 図 (a) 及び (b) に示す. 主な地震活動は以下のとおりである.

(1) 鹿児島県薩摩地方の地震活動(M3.3, 最大震度 2, 第 2 図)

2021 年 11 月 29 日 06 時頃から鹿児島県薩摩地方で地震活動がやや活発となり,11 月 29 日 10 時 までに震度1以上を観測した地震が10回(震度2:6回,震度1:4回)発生した.このうち最大 規模の地震は,29 日 07 時 13 分に発生した M3.3 の地震(最大震度2)である.今回の地震活動は 地殻内で発生した.

(2) トカラ列島近海(小宝島付近)の地震活動(M6.1,最大震度 5 強,第 3 図 (a) ~ (d))

2021年12月4日12時頃からトカラ列島近海(小宝島付近)で地震活動が活発となり,12月31 日までに震度1以上を観測した地震が308回(震度5強:1回,震度4:2回,震度3:15回,震 度2:85回,震度1:205回)発生した.このうち最大規模の地震は,12月9日11時05分に発生 したM6.1の地震(最大震度5強)で,陸のプレート内で発生した.この地震の発震機構(CMT解) は,北西-南東方向に張力軸を持つ正断層型である.今回の地震活動付近では,過去にもまとまっ た地震活動がある.今回の地震活動に非定常ETAS解析を適用すると,背景地震活動度は,12月 上旬の活動開始当初は高く,12月下旬にかけて徐々に低くなる様子がみられる.

(3) 日向灘の地震(M6.6,最大震度5強,第4図(a)~(g))

2022年1月22日01時08分に日向灘の深さ45kmでM6.6の地震(最大震度5強)が発生した. この地震は、フィリピン海プレート内部で発生した.発震機構(CMT解)は、西北西-東南東方 向に張力軸を持つ型である.この地震の発生以降、2月3日までの時点で震度1以上を観測した地 震が43回(震度5強:1回,震度3:5回,震度2:8回,震度1:29回)発生した.波形相関を 用いた Double-Difference法¹⁾による詳細な震源分布をみると、主な地震活動は北東-南西方向の ほぼ鉛直な面上に分布し、M6.6の震源付近では地震が少ない.今回のM6.6の地震時の主な破壊域 は走向方向に約6km、傾斜方向に約6kmで、破壊開始点から南側のやや浅い領域に広がり、最大す べり量は3.6m、主な破壊継続時間は約5秒であった.

(4) トカラ列島近海(小宝島付近)の地震活動(M3.2,最大震度3,第5図(a),(b))

トカラ列島近海(小宝島付近)では、2022年2月に震度1以上を観測する地震が12回(震度3: 1回,震度2:5回,震度1:6回)発生した.このうち,最大震度を観測した地震は、20日11時 30分のM3.2の地震(最大震度3)である.また,最大規模の地震は22日00時36分に発生した M3.5 の地震(最大震度1)である.これらの地震は,陸のプレート内で発生した.今回の地震活動付近では,過去にも時々まとまった地震活動があり,直近のものは2021年12月の地震活動(最大M6.1)であった.

(5) 奄美大島近海の地震(M5.1,最大震度 3,第6図 (a),(b))

2022 年 3 月 6 日 10 時 13 分に奄美大島近海で M5.1 の地震(最大震度 3)が発生した. この地震 は新たな相似地震グループの最新の地震として検出された.

参考文献

Waldhauser, F. and W. L. Ellsworth. (2000), *Bull. Seismo. Soc. AM.*, **90**, 1353-1367.
 A Double-Difference Earthquake Location Algorithm: Method and Application to the Northern Hayward Faulst, California.

九州地方とその周辺の地震活動(2021年11月~2022年1月、№4.0)

九州地方とその周辺の地震活動(2022年2月~4月、№4.0)

- 第1図(a) 九州地方とその周辺の地震活動(2021年11月~2022年1月,M≧4.0, 深さ≦ 700km).
- Fig. 1(a) Seismic activity in and around the Kyushu district (November 2021– January 2022, $M \ge 4.0$, depth ≤ 700 km).

第1図(b) つづき (2022年2月~4月, M≧4.0, 深さ≦700km). Fig. 1(b) Continued (February – April 2022, M≧4.0, depth ≦700 km).

11月29日 鹿児島県薩摩地方の地震活動

第2図 2021年11月29日~ 鹿児島県薩摩地方の地震活動.

Fig. 2 Seismic activity in Satsuma region, Kagoshima Prefecture from November 29, 2021.

2021年12月4日12時頃からトカラ列島近海(小宝島付 近) で地震活動が活発となり、12月31日24時までに震度 1以上を観測した地震が308回(震度5強:1回、震度 4:2回、震度3:15回、震度2:85回、震度1:205 回)発生した。このうち最大規模の地震は、9日11時05 分に発生したM6.1の地震(最大震度5強)で、陸のプレ ート内で発生した。この地震の発震機構(CMT解)は、 北西-南東方向に張力軸を持つ正断層型である。

今回の地震活動により、人的被害や住家被害はなかっ たが、鹿児島県十島村(悪石島)でがけ崩れ等の被害が 生じた(2021年12月23日現在、鹿児島県による)。また、 悪石島の約半数の住民が鹿児島市や奄美市などに避難 した。気象庁は「気象庁防災対応支援チーム (JETT)」 を鹿児島県庁及び十島村役場に派遣し、地震活動・気象 状況の解説を行うなどの支援を行った。さらに、12月14 日に「気象庁機動調査班 (JMA-MOT)」を派遣し、震度5 強を観測した震度観測点(悪石島)について点検を実施 し、観測環境が地震によって変化していないことを確認 するとともに、周辺の被害や揺れの状況について確認し た。

1994年10月以降の活動をみると、今回の地震活動付近 (領域 a) では、時々まとまった活動がある。このうち、 2000年10月2日に発生したM5.9の地震(最大震度5強) 今回の地震活動でを最大とする活発な地震活動により、鹿児島県十島村悪 石島で水道管破損1箇所等の被害があった(総務省消防 庁による)。また、最近では、2021年4月10日と同12日 に発生したM5.3の地震(最大震度4)を最大とする地震 活動があり、震度1以上を観測した地震が265回(震度 4の地震6回を含む)発生した。

> 今回の地震活動と過去の主な地震活動について、震央 分布図、時空間分布図、M-T 図及び回数積算図を活動期 間ごとに90日間の期間で比較すると多様な活動の形態 が見られ、個々の地震活動の終わりの時期を特定するこ とが難しいことがわかる(次ページ参照)。

領域 a 内の時空間分布図(南北投影)

震央分布図

(1994年10月1日~2021年12月31日、

2021 年 12 月の地震を赤色〇で表示

図中の発震機構は CMT 解

トカラ列鳥

奄美大島

ß

M5.3

2021年4月12日 2021年4月10日

ล

宝島

129° E

小宝鳥

50km

30°

29° N

北

M5.3

J

海溝軸

ロク鳥

諏訪之瀨島

悪石島

彩寫界島

中之島

2000年10月2日

M5.9

した規模の地震

2021年12月9日

M6.1

6.0

5.0

4.0

3.0

2.5

屋久島

深さO~50km、M≧2.5)

第3図(a) 2021年12月4日~ トカラ列島近海(小宝島付近)の地震活動.

Seismic activity in and around the Tokara Islands (near Kodakarashima Island) from December 4, 2021. Fig. 3(a)

第3図(b) つづき. Fig. 3(b) Continued.

今回の地震活動付近(領域 a) で求められた 発震機構解(CMT解)をみると、北西-南東方向 に張力軸を持つ正断層型や横ずれ断層型がほ とんどである。

1919年以降の活動をみると、今回の地震活動 周辺(領域b)では、M5.0以上の地震が時々発 生している。このうち、1975年9月25日に発生 したM5.3の地震により、鹿児島県十島村小宝島 で地割れの被害が、1972年7月7日に発生した M3クラスの地震により、鹿児島県十島村小宝 島で地割れや瓦のずれの被害があった(日本被 害地震総覧による)。

第3図(c-1) つづき. Fig. 3(c-1) Continued.

в	最大震度別回数								震度1以上を 観測した回数		
-	震度1	震度2	震度3	震度4	震度5弱	震度5強	震度6弱	震度6強	震度7	回数	累計
4日	35	22	2	0	0	0	0	0	0	59	59
5日	59	20	7	1	0	0	0	0	0	87	146
6日	29	15	1	0	0	0	0	0	0	45	191
7日	21	4	2	0	0	0	0	0	0	27	218
8日	3	1	0	1	0	0	0	0	0	5	223
9日	36	11	2	0	0	1	0	0	0	50	273
10日	4	2	1	0	0	0	0	0	0	7	280
11日	5	1	0	0	0	0	0	0	0	6	286
12日	1	1	0	0	0	0	0	0	0	2	288
13日	2	3	0	0	0	0	0	0	0	5	293
14日	2	2	0	0	0	0	0	0	0	4	297
15日	0	1	0	0	0	0	0	0	0	1	298
16日	0	1	0	0	0	0	0	0	0	1	299
17日	0	1	0	0	0	0	0	0	0	1	300
18日	0	0	0	0	0	0	0	0	0	0	300
19日	1	0	0	0	0	0	0	0	0	1	301
20日	0	0	0	0	0	0	0	0	0	0	301
21日	0	0	0	0	0	0	0	0	0	0	301
22日	3	0	0	0	0	0	0	0	0	3	304
23日	0	0	0	0	0	0	0	0	0	0	304
24日	1	0	0	0	0	0	0	0	0	1	305
25日	0	0	0	0	0	0	0	0	0	0	305
26日	1	0	0	0	0	0	0	0	0	1	306
27日	0	0	0	0	0	0	0	0	0	0	306
28日	1	0	0	0	0	0	0	0	0	1	307
29日	1	0	0	0	0	0	0	0	0	1	308
30日	0	0	0	0	0	0	0	0	0	0	308
31日	0	0	0	0	0	0	0	0	0	0	308
総計	205 85 15		2	0	1	0	0	0		308	

今回の地震活動における震度1以上の日別最大震度別地震回数表 (2021年12月4日~12月31日)

今回の地震活動における震度1以上の日別最大震度別地震回数図 (2021年12月4日~12月31日)

第3図(c-2) つづき. Fig. 3(c-2) Continued.

Fig. 3(d-1) Continued.

トカラ列島近海の地震活動(非定常ETAS解析)

非定常ETASモデル(Kumazawa and Ogata, 2013)による背景地震活動度 $\mu(t)$,余震誘発強度 $K_0(t)$ を推定した

$$\lambda_{\theta}(t|H_{t}) = \mu(t) + \sum_{\{i:t_{i} < t\}} \frac{K_{0}(t_{i})e^{\alpha(M_{i} - M_{c})}}{(t - t_{i} + c)^{p}}$$

 $\lambda_{\theta}(t|H_t):$ 強度関数、 $\mu(t):$ 背景地震強度、 $K_0(t):$ 余震誘発強度

Kumazawa, T., Ogata, Y., 2013. Quantitative description of induced seismic activity before and after the 2011 Tohoku-Oki earthquake by nonstationary ETAS model. J. Geophys. Res.118, 6165-6182.

〇震央分布図中の矩形内の震源データを用いて、非定常ETAS解析を行った。非定常ETAS解析に用いるμ、K₀の初期 値及びα、c、pは、定常ETAS解析により求めた。

第3図(d-2) つづき. Fig. 3(d-2) Continued.

領域 a 内の断面図 (A-B投影)

震度1以上の日別最大震度別地震回数表 (2022年1月22日~2月3日)

月日	最大震度別回数 震度 観測							1以上を した回数	
	1	2	3	4	5弱	5強	回数	累計	
1月22日	22	6	5	0	0	1	34	34	
1月23日	3	1	0	0	0	0	4	38	
1月24日	1	0	0	0	0	0	1	39	
1月25日	0	0	0	0	0	0	0	39	
1月26日	1	0	0	0	0	0	1	40	
1月27日	1	0	0	0	0	0	1	41	
1月28日	0	1	0	0	0	0	1	42	
1月29日	0	0	0	0	0	0	0	42	
1月30日	0	0	0	0	0	0	0	42	
1月31日	0	0	0	0	0	0	0	42	
2月1日	1	0	0	0	0	0	1	43	
2月2日	0	0	0	0	0	0	0	43	
2月3日	0	0	0	0	0	0	0	42	
総計	29	8	5	0	0	1		43	

Fig. 4(a-1) The earthquake in the Hyuganada Sea on January 22, 2022.

2022年1月22日01時08分に日向灘の深さ 45kmでM6.6の地震(最大震度5強)が発生し た。この地震は、フィリピン海プレート内部で 発生した。この地震の発震機構(CMT解)は、 西北西-東南東方向に張力軸を持つ型である。 この地震の発生直後、地震活動が一時的に活発 となったが、地震回数は減少してきている。な お、2月3日までに震度1以上を観測した地震 が43回(震度5強:1回、震度3:5回、震 度2:8回、震度1:29回)発生した。

今回の地震により、負傷者 13 人、住家一部 破損1棟などの被害を生じた(1月31日現在、 総務省消防庁による)。

気象庁は「気象庁防災対応支援チーム (JETT)」を大分県庁に派遣し、地震活動・気 象状況の解説を行うなどの支援を行った。ま た、1月22日に「気象庁機動調査班(JMA-MOT)」 を派遣し、震度5強を観測もしくは推計した震 度観測点(9地点)について点検を実施し、観測 環境が地震によって変化していないことを確 認するとともに、周辺の被害や揺れの状況につ いて確認した。

1994年10月以降の活動をみると、今回の地 震の震源付近(領域b)ではM5.0以上の地震 が3回発生している。このうち、最大規模の地 震は2006年3月27日に発生したM5.5の地震 (最大震度5弱)である。また、2017年6月 20日にはM5.0の地震(最大震度5強)が発生 している。

領域b内のM-T図

今回の地震付近(領域 c)で求められた発震 機構解(CMT解)をみると、概ね西北西-東南 東方向に張力軸を持つ型が多い。

1919 年以降の活動をみると、今回の地震の 震央周辺(領域d)ではM6.0以上の地震が4 回発生している。1968 年4月1日に発生した 「1968 年日向灘地震」(M7.5、最大震度5)で は、負傷者57人、住家被害7,423棟などの被 害を生じた(「日本被害地震総覧」による)。この地震により、大分県の蒲江で240 cm(最大全 振幅)の津波を観測した(「日本被害津波総覧」 による)。また、1984 年8月7日に発生した M7.1の地震(最大震度4)では、負傷者9人 などの被害を生じた(「日本被害地震総覧」に よる)。この地震により、宮崎県の延岡で28 cm(最大全振幅)の津波を観測した(「日本被 害津波総覧」による)。

第4図 (a-2) つづき. Fig. 4(a-2) Continued.

令和4年1月22日01時08分 日向灘の地震

長周期地震動階級1以上を観測した地域・観測点

2022	年 1月22日	01時08分日向灘北緯3	2度42.9分東経132度04.3分深さ45km	M6.6
都道府県	長周期 地震動階級	地域名称	観測点名称	震度
熊本県	2	熊本県熊本	八代市平山新町	4
		熊本県球磨	人吉市西間下町	4
			多良木町多良木	4
	1	熊本県阿蘇	南阿蘇村中松	4
		熊本県熊本	宇城市松橋町	4
			熊本西区春日	3
		熊本県天草・芦北	上天草市大矢野町	4
大分県	2	大分県中部	大分市明野北	5弱
		大分県南部	佐伯市蒲江蒲江浦	5強
	1	大分県北部	国東市国見町西方寺	4
		大分県中部	臼杵市乙見	4
		大分県南部	佐伯市堅田	4
			豊後大野市三重町	4
		大分県西部	日田市三本松	3
			玖珠町帆足	3
宮崎県	2	宮崎県北部平野部	延岡市天神小路	5弱
		宮崎県北部山沿い	高千穂町三田井	5強
	1	宮崎県北部平野部	日向市亀崎	4
			日向市大王谷運動公園	4
			新富町上富田	4
		宮崎県南部山沿い	都城市菖蒲原	3
			小林市真方	4
大阪府	1	大阪府南部	関西国際空港	2
鳥取県	1	鳥取県西部	境港市東本町	3
徳島県	1	徳島県北部	徳島市大和町	3
愛媛県	1	愛媛県南予	宇和島市住吉町	4
高知県	1	高知県西部	宿毛市片島	4
			土佐清水市有永	3
			土佐清水市足摺岬	3
福岡県	1	福岡県筑後	久留米市津福本町	4
佐賀県	1	佐賀県南部	佐賀市駅前中央	3
長崎県	1	長崎県北部	平戸市岩の上町	2
		長崎県島原半島	雲仙市国見町	3
鹿児島県	1	鹿児島県薩摩	さつま町宮之城屋地	3
			霧島市隼人町内山田	3
			鹿児島空港	3

長周期地震動階級1以上を観測した地域の分布図

長周期地震動階級の凡例: 🔜 階級1 🔜 階級2 💻 階級3 📰 階級4

長周期地震動階級関連解説表

長周期地震動 階級	人の体感・行動	室内の状況	備考
長周期地震動 階級 1	室内にいたほとんどの 人が揺れを感じる。驚 く人もいる。	プラインドなど吊り下げ もの大きく揺れる。	_
長周期地震動 階級2	室内で大きな揺れを感 じ、物につかまりたい と感じる。物につかま らないと歩くことが難 しいなど、行動に支障 を感じる。	キャスター付き什器がわ ずかに動く。棚にある食 器類、書棚の本が落ちる ことがある。	_
長周期地震動 階級3	立っていることが困難 になる。	キャスター付き什器が大 きく動く。固定していな い家具が移動することが あり、不安定なものは倒 れることがある。	間仕切壁など にひび割れ・ 亀裂が入るこ とがある。
長周期地震動 階級4	立っていることができ す、はわないと動くこ とができない。揺れに ほんろうされる。	キャスター付き什器が大 きく動き、転倒するもの がある。固定していない 家具の大半が移動し、倒 れるものもある。	間仕切壁など にひび割れ・ 亀裂が多くな る。

第4図(c) つづき. Fig. 4(c) Continued.

地震予知連絡会会報第 108 巻

2022 年 9 月発行

第4図(d-1) つづき.

Fig. 4(d-1) Continued.

- 514 -

1月22日 日向灘の地震 (波形相関DD法による震央分布に発震機構分布を重ねて表示)

地震予知連絡会会報第108

奏

2022 年 9 月発行

第4図(d-2) つづき. Fig. 4(d-2) Continued.

1月22日 日向灘の地震(波形相関DD法による震源の時系列分布)

第4図(e) つづき. Fig. 4(e) Continued.

2022 年 1 月 22 日 日向灘の地震 - 近地強震波形による震源過程解析(暫定)-

2022年01月22日01時08分(日本時間)に日向灘で発生した地震(M_{JMA}6.6)について、国立研究 開発法人防災科学技術研究所の強震観測網(K-net、KiK-net)の近地強震波形記録を用いた震源過程 解析を行った。

破壊開始点は、気象庁による暫定震源の位置(32°42.9′N、132°04.3′E、深さ45 km)とした。 断層面は、気象庁 CMT 解の2枚の節面のうち、高角に傾斜した節面(走向212°、傾斜77°、すべ り角-71°)を仮定して解析した。最大破壊伝播速度は3.3 km/sとした。理論波形の計算には Koketsu et al. (2012)の結果から設定した地下構造モデルを用いた。

主な結果は以下のとおり(この結果は暫定であり、今後更新することがある)。

- ・主な破壊領域は走向方向に約6km、傾斜方向に約6kmであった。
- ・主なすべりは破壊開始点から南側のやや浅い領域に広がり、最大すべり量は 3.6 m であった(周辺の構造から剛性率を 71 GPa として計算)。
- ・主な破壊継続時間は約5秒であった。
- ・モーメントマグニチュード (Mw) は 6.5 であった。

結果の見方は、https://www.data.jma.go.jp/eqev/data/world/about srcproc.html を参照。

星印は破壊開始点を示す。青色の×は小断層の中心位置を示す。灰色の丸は今回の地震(M_{JMA}6.6)発生(1/22 01:08)から 24 時間以内に発生した地震の震源(M1.0以上)を示す。

132°12'E

132°06'E

解析に用いた断層パラメータを震源 球の赤線で示す。

第4図(f-1) つづき. Fig. 4(f-1) Continued.

131°54'E

132°00'E

謝辞 国立研究開発法人防災科学技術研究所の強震観測網(K-net、 KiK-net)を使用しました。

参考文献

Koketsu, K., H. Miyake and H. Suzuki, Japan Integrated Velocity Structure Model Version 1, paper no. 1773. Paper Presented at the 15th World Conference on Earthquake Engineering, International Association for Earthquake Engineering, Lisbon, 24-28 Sept. 2012.

第4図(f-2) つづき.

Fig. 4(f-2) Continued.

・拡大図内の緑色線は△CFFの100kPa間隔のコンターを示す

・橙色星は1月22日日向灘の地震Mi6.6の震央、橙色矩形はソース断層モデル(太線が断層上端側)を示す

- ・紫色線は南海トラフ巨大地震の想定震源域、黒点線はフィリピン海プレートの上面の等深線データ(※1)を示す
- ・参考文献:※1)Hirose et al.(2008),Baba et al.(2002)、※2) DeMets et al.(2010)、※3) 岩切・上田(2018)

第4図(g) つづき. Fig. 4(g) Continued.

トカラ列島近海の地震活動(小宝島付近)

トカラ列島近海(小宝島付近)では、2022年2月に震 度1以上を観測する地震が12回(震度3:1回、震度2: 5回、震度1:6回)発生した。このうち、最大震度を 観測した地震は、20日11時30分のM3.2の地震(最大震度 3、図中①)である。また、最大規模の地震は22日00時 36分に発生したM3.5の地震(最大震度1、図中②)であ る。これらの地震は、陸のプレート内で発生した。

1994年10月以降の活動をみると、今回の地震活動付近 (領域 a) では、時々まとまった活動がある。直近のも のは、2021年12月4日12時頃から活発になった地震活動 で、12月31日24時までに震度1以上を観測した地震が 308回(震度5強:1回、震度4:2回、震度3:15回、 震度2:85回、震度1:205回)発生した。このうち、 最大規模の地震は、9日11時05分に発生したM6.1の地震

(最大震度5強)である。この地震活動により、人的被 害や住家被害はなかったが、鹿児島県十島村悪石島でが け崩れ等の被害が生じた(2021年12月23日現在、鹿児島 県による)。また、2021年4月には、10日と12日に発生 したM5.3の地震(最大震度4)を最大とする地震活動が あり、震度1以上を観測した地震を265回(震度4の地 震6回を含む)観測した。さらに、2000年10月の活発な 地震活動では、同月2日に発生したM5.9の地震(最大震 度5強)により、鹿児島県十島村悪石島で水道管破損1 箇所等の被害があった(総務省消防庁による)。

今回の地震活動と過去の主な地震活動について、震央 分布図、時空間分布図、M-T 図及び回数積算図を活動期 間ごとに120日間の期間で比較すると多様な活動の形態 が見られ、個々の地震活動の終わりの時期を特定するこ とが難しいことがわかる(次々ページ参照)。

第5図 (a-1) 2022 年 2 月 トカラ列島近海(小宝島付近)の地震活動. Fig. 5(a-1) Seismic activity in and around the Tokara Islands (near Kodakarashima Island) on February 2022.

年月日				最	大震度別回]数				震度1 観測し	震度1以上を 観測した回数				
	震度1	震度2	震度3	震度4	震度5弱	震度5強	震度6弱	震度6強	震度7	回数	累計				
2021年12月	205	85	15	2	0	1	0	0	0	308	308				
2022年1月	4	0	0	0	0	0	0	0	0	4	312				
2022年2月1日	0	0	0	0	0	0	0	0	0	0	312				
2日	0	0	0	0	0	0	0	0	0	0	312				
3日	0	0	0	0	0	0	0	0	0	0	312				
4日	0	0	0	0	0	0	0	0	0	0	312				
5日	0	0	0	0	0	0	0	0	0	0	312				
6日	0	0	0	0	0	0	0	0	0	0	312				
7日	0	0	0	0	0	0	0	0	0	0	312				
8日	0	0	0	0	0	0	0	0	0	0	312				
9日	0	0	0	0	0	0	0	0	0	0	312				
10日	0	0	0	0	0	0	0	0	0	0	312				
11日	0	0	0	0	0	0	0	0	0	0	312				
12日	0	0	0	0	0	0	0	0	0	0	312				
13日	1	1	0	0	0	0	0	0	0	2	314				
14日	0	0	0	0	0	0	0	0	0	0	314				
15日	0	1	0	0	0	0	0	0	0	1	315				
16日	0	0	0	0	0	0	0	0	0	0	315				
17日	0	0	0	0	0	0	0	0	0	0	315				
18日	0	0	0	0	0	0	0	0	0	0	315				
19日	0	0	0	0	0	0	0	0	0	0	315				
20日	4	3	1	0	0	0	0	0	0	8	323				
21日	0	0	0	0	0	0	0	0	0	0	323				
22日	1	0	0	0	0	0	0	0	0	1	324				
23日	0	0	0	0	0	0	0	0	0	0	324				
24日	0	0	0	0	0	0	0	0	0	0	324				
25日	0	0	0	0	0	0	0	0	0	0	324				
26日	0	0	0	0	0	0	0	0	0	0	324				
27日	0	0	0	0	0	0	0	0	0	0	324				
28日	0	0	0	0	0	0	0	0	0	0	324				
総計	215	90	16	2	0	1	0	0	0		324				

震度1以上の最大震度別地震回数表(2021年12月~2022年2月)

震度1以上の日別最大震度別地震回数図 (2021年12月4日~2022年2月28日)

第5図 (a-2) つづき. Fig. 5(a-2) Continued.

第5図(b) つづき. Fig. 5(b) Continued.

6

5

3月6日 奄美大島近海の地震

第6図(a) 2022年3月6日 奄美大島近海の地震.

The earthquake in and around Amami-oshima Island on March 6, 2022. Fig. 6(a)

3月6日 奄美大島近海の地震(相似地震)

2022年3月6日の奄美大島近海の地震(M5.1、最大震度3)について強震波形による相関解析を行った結果、新たな相似地震グループの最新の地震として検出

※1 各観測点の波形の比較で得られたコヒーレンスの中央値が0.95以上の場合に相似地震として検出し、相似地震のグループ分けはコヒーレンスを用いて機械的に行っている[溜渕ほか、2014]。
※2 すべり量推定には、モーメントマグニチュードと地震モーメントの関係式[Hanks and Kanamori(1979)]及び 地震モーメントとすべり量の関係式[Nadeau and Johnson(1998)]を使用。得られた積算すべり量と経過時間から最小自乗法を用いてグループ毎の年平均すべり量を求めた。

●波形例

※変位波形は加速度記録を気象庁59型地震計相当に変換したもの

第6図(b) つづき. Fig. 6(b) Continued.