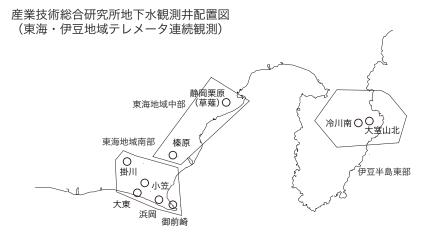
5-4 東海・関東・伊豆地域における地下水等観測結果(2022年11月~2023年4月)(67) The Variation of the Groundwater Level and Subsidence in the Tokai, Kanto District and Izu Peninsula, Japan. (from Nov. 2022 to Apr. 2023) (67)

> 産業技術総合研究所 Geological Survey of Japan, AIST

2022年11月~2023年4月の半年間の東海・関東・伊豆地域の地下水等の観測結果を報告する.本報告では、観測井配置図(第1図)の図中の枠で示す3地域および第2図に示す地域に分けて、6ヶ月間の観測データを示し、また掛川における沈下等の観測結果についても示す(第3~7図)、なお図中の印で、\$は保守を、*は雨量補正不十分を、@は解析による見かけ上のギャップを、#はバッテリー消耗を、?は原因不明をそれぞれ表す。

東海地域中部:静岡栗原1の水位上が2015年4月中旬に井戸管の広い部分まで上昇したのでそ

れ以降の水位変化が小さくなっている.

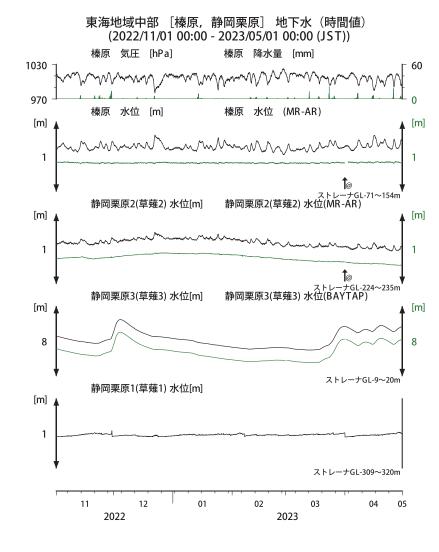

東海地域南部:御前崎のガス流量システムを2017年2月16日に更新した.

伊豆半島東部地域:特記すべき変化はない.

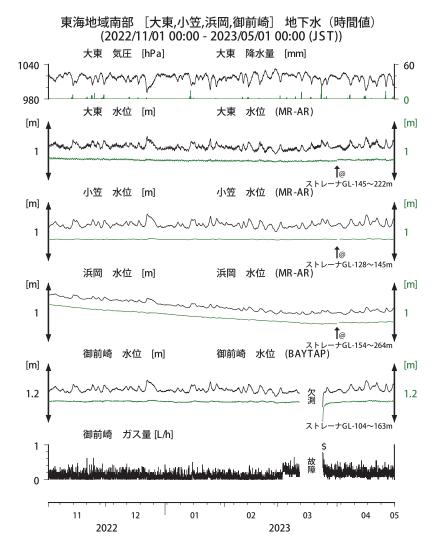
関東地域:つくば2,3,4の水位が例年春から秋に低下するのは、周囲の揚水によると考えられる.

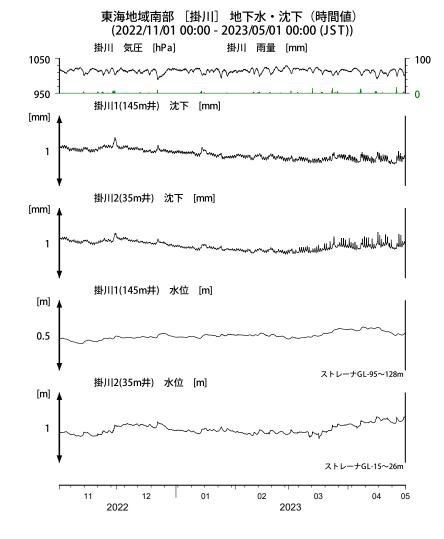
これらのデータは WellWeb (http://www.gsj.jp/wellweb) にて公開している.

(木口 努・松本則夫・北川有一・板場智史・落 唯史・佐藤 努・矢部 優)

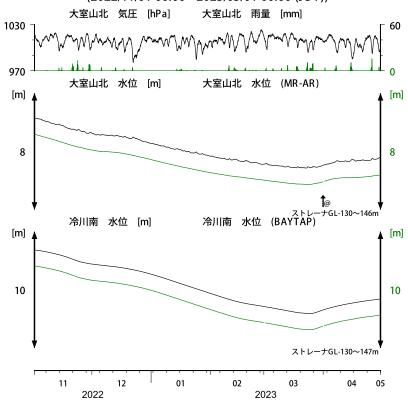


第1図 伊豆・東海地域の産業技術総合研究所地下水等観測井の配置図 Fig.1 Location of the groundwater observation wells in and around the Tokai and Izu district.

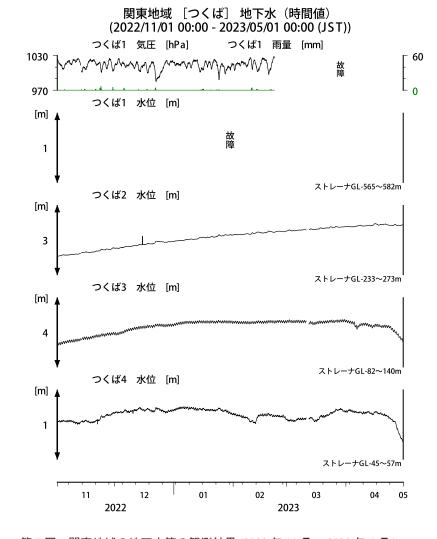

産業技術総合研究所地下水観測井配置図 (南関東地域テレメータ連続観測)


第2図 関東地域の産業技術総合研究所地下水等観測井の配置図 Fig.2 Location of the groundwater observation wells in the Kanto district.

第3図 東海地域中部の地下水等の観測結果 (2022 年 11 月~ 2023 年 4 月) Fig.3 Observed groundwater levels and others in the central Tokai district from Nov. 2022 to Apr. 2023.



第4図 東海地域南部の地下水等の観測結果 (2022 年 11 月~ 2023 年 4 月) Fig.4 Observed groundwater levels and others in the southern Tokai district from Nov. 2022 to Apr. 2023.



第 5 図 掛川における沈下等の観測結果 (2022 年 11 月~ 2023 年 4 月)
Fig.5 Observed subsidence data and others at the Kakegawa observation well from Nov. 2022 to Apr. 2023.

伊豆半島東部 [大室山北,冷川南] 地下水 (時間値) (2022/11/01 00:00 - 2023/05/01 00:00 (JST))

第6図 伊豆半島東部の地下水等の観測結果 (2022 年 11 月~ 2023 年 4 月) Fig.6 Observed groundwater levels and others in the eastern Izu peninsula district from Nov. 2022 to Apr. 2023.

第7図 関東地域の地下水等の観測結果 (2022 年 11 月~ 2023 年 4 月)
Fig.7 Observed groundwater levels and others in the Kanto district from Nov. 2022 to Apr. 2023.