7-4 地震予知に関する確率と関係式の表

Probabilities Related to Earthquake Prediction

東京大学地震研究所 宇津徳治 Tokuji Utsu Earthquake Research Institute,University of Tokyo

ある地震予知観測項目に現れる異常A(そのあるものは地震Eの前兆であり,他は前兆でなくいわゆるノイズである)に基づいて地震予知業務を行う場合を考える。異常Aが現れたときには長さ τ の期間は地震Eの発生確率が宰常時より高いとみて,その期間(異常期間または警戒期間)に対して予報を出すとする。いま,充分に長い期間(長さW)中に地震EがM個発生し,そのうちm個はAによる異常期間内に, μ 個はその他の期間(正常期間)内に含まれるとする。また,Wの間に異常AはF回出現し,そのうちm回はその異常期間内に地域Eを含み,n回は含まないとする。この場合には第1表に示すようないろいろな確率が考えられる。ただし, $T=W/\tau$ とおき, $M=m+\mu$,F=m+nである。なお,地震E,異常Aとも稀な現象で,長さ τ 当りの平均発生(出現)度数と発生(出現)の確率は等しいと考えている。

以上は、異常期間の長さが τ の一つの観測項目を考えた場合であるが、例えばn個の観測項目があるとき、それらに同時に異常が現れる場合を改めて一つの異常Aとみなすことにすれば、この異常に対しても第2表の諸式は成り立つはずである。ただし、異常期間の長さがまちまちでは困るので、各項目の異常期間の長さは等しく τ であり、二つ以上の異常期間が重複するときには、それらの開始時も一致し完全に重なるという仮定を設ける。

いま、上記の仮定を満たす π 個の独立な観測項目があるとする。i番目の項目とj番目の項目が独立とは、i番目の項目に異常が出るか否かは、j番目の項目に異常が出るか否かには依らないということである。i番目の項目とj番目の項目がまったく無関係というわけではない。両者は地震Eを通じて間接的に関係している。i番目の項目による異常A、およびそれのみによる確率p, q, r, sをそれぞれに添字iを付けて示すと、第3表に掲げる三つの場合についての p_0 , p, q, r, s はそれぞれ同表に示すような形で表される。q, s を表す式は独立性の仮定から直ちに得られ、他の式は第2表の公式を用いて導かれる。

上記の仮定が成り立たない場合の議論を含め、詳細は震研彙報に発表する予定である。

第1表 地震予知に関する確率

Table 1 Probabilities related to earthquake prediction.

記号	定義	式	説 明 (いろいろな言い表し方がある)
an 7	此 裁	I,	
p_{0}	P(E)	$\frac{M}{T}$	長さての期間当りのEの発生率 ランダムに選んだ長さての期間がEを含む確率 ランダムに選んだ長さての期間に出した予報の適中率(まぐれ当り率)
1-p0	$P(\overline{E})$	$\frac{T-M}{T}$	ランダムに選んだ長さτの期間が E を含まない確率 ランダムに選んだ長さτの期間に出した予報が外れる確率
<i>q</i> ₀	P(A)	$\frac{F}{T}$	長さての期間当りのAの出現率 全期間のうちAによる異常期間の占める割合 ランダムに選んだ長さての期間にAが出現する確率 時間軸上にランダムにとった1点がAによる異常区間に含まれる確率
$1-q_{0}$	$P(\overline{A})$	$\frac{T-F}{T}$	全期間のうち A による正常期間の占める割合 ランダムに選んだ長さ $ au$ の期間に A が出現しない確率 時間軸上にランダムにとった 1 点が A による正常期間に含まれる確率
<i>p</i>	$P(E \mid A)$	$\frac{m}{F}$	Aによるある一つの異常期間が E を含む確率 Aによる異常期間において長さτの期間当りの E の発生率 Aにもとづく予報の適中率(予報は長さτの異常期間に対して出す)
1 - p	$P(\overline{E} A)$	$\frac{n}{F}$	Aによるある一つの異常期間がEを含まない確率 Aにもとづく予報が外れる確率
q	$P(A \mid E)$	<u>m</u> M	ある一つの E が A による異常期間に含まれる確率 ある一つの E の直前の長さτの期間に A が出現する確率 Aにもどづいて予知業務を行っているときの E の予知率
1-q	$P(\overline{A} E)$	<u>μ</u> Μ	ある一つのEがAによる正常期間に含まれる確率 ある一つのEの直前の長さτの期間にAが出現しない確率 Aにもとづいて予知業務を行っているとき,ある一つのEが予知されない 確率
r	$P(E \overline{A})$	$\frac{\mu}{T-F}$	Aによる正常期間中にランダムに選んだ長さての期間が Eを含む確率 Aによる正常期間において長さての期間当りの Eの発生率 Aにもとづいて予知業務を行っているとき予知されない Eの長さての期間 当りの発生率 Aによる正常期間において長さての期間に「地震なし」の予報を出すとき、それが外れる確率
1-r	$P(\overline{E} \overline{A})$	$\frac{T-(m+n+\mu)}{T-F}$	Aによる正常期間中にランダムに選んだ長さ $ au$ の期間が E を含まない確率 A による正常期間において長さ $ au$ の期間に出した「地震なし」の予報の適中率
s	$P(A \overline{E})$	$\frac{n}{T-M}$	Eの直前の長さτの期間を含まないようにランダムに選んだ長さτの期間に Aが出現する確率 全期間から Eの直前の長さτの期間を除いた部分のうち、Aによる異常期間が占める割合 時間軸上で Eの直前の長さτの期間を除いた部分にランダムにとった1点が Aによる異常期間に含まれる確率 Aのうち Eの前兆ではないものの長さτの期間当りの出現率 Aにもとづく予報のうち外れたものの長さτの期間当りの発表率
1 — s	$P(\overline{A} \overline{E})$	$\frac{T-(m+n+\mu)}{T-M}$	Eの直前の長さ $ au$ の期間を含まないようにランダムに選んだ長さ $ au$ の期間に A が出現しない確率 全期間から E の直前の長さ $ au$ の期間を除いた部分のうち、 A による正常期間が占める割合 時間軸上で E の直前の長さ $ au$ の期間を除いた部分にランダムにとった 1 点が A による正常期間に含まれる確率

第2表 確率間の関係式

Table 2 Relationa between six probabilities.

記	号	<i>P</i> ₀	<i>q</i> 0	р	q	r	s	
定	義	P(E)	P(A)	$P(E \mid A)$	$P(A \mid E)$	$P(E \mid \overline{A})$	$P(A \overline{E})$	
	略 化	永年平均的 地震発生率	永年平均的 異常出現率	予報の適中率	地震の予知率	予知されな い 地 震 の 発 生 率	空振り予報 の発表率 (ノイズの 発生率)	○印の4個の確率間の関係式
	1	0	0	0	0			$p_0 q = q_0 p$
	2	0	0	0		0		$p_0 - r = q_0 (p - r)$
	3	0	0	0			0	$(1-p_0) s = q_0 (1-p)$
	4	0	0		0	ó		$(1-q_0) r = p_0 (1-q)$
	5	0	0		0		0	$q_0 - s = p_0 (q - s)$
	6	0	0			0	0	$(1-p_0)(1-s) = (1-q_0)(1-r)$
	7	0		0	. 0	0		$\left \frac{1}{p_0} - \frac{1}{r} \right = q \left(\frac{1}{p} - \frac{1}{r} \right)$
	8	0		0	0		0	$q(\frac{1}{p}-1)=s(\frac{1}{p_0}-1)$
	9	0		.0		0	0	$(1-p)(p_0-r)=s(1-p_0)(p-r)$
1	0	0			0	0	0	$(1-s)(\frac{1}{p_0}-1)=(1-q)(\frac{1}{r}-1)$
1	1		0	0	0	. 0		$p\left(\frac{1}{q}-1\right)=r\left(\frac{1}{q_0}-1\right)$
1	2		0	0	0		0	$\left \frac{1}{q_0} - \frac{1}{s} = p\left(\frac{1}{q} - \frac{1}{s}\right)\right $
1	3		0	0		0	0	$(1-r)(\frac{1}{q_0}-1)=(1-p)(\frac{1}{s}-1)$
1	4		0		0	0	0	$(1-q)(q_0-s)=r(1-q_0)(q-s)$
1	5			0	0	0	0	$\left(\frac{1}{p}-1\right)\left(\frac{1}{s}-1\right)=\left(\frac{1}{q}-1\right)\left(\frac{1}{r}-1\right)$

1-p: 予報の空振り率,1-q: 地震の見逃し率,1-r: 異常がないときの安心度

第3表 n個の観測項目がある場合の地震予知に関する確率

Table 3 Expressions for multi-element prediction under the assumptions described in the text.

場合	A_1 から A_n まで同時に異常が現れたとき,共通の異常期間を異常期間とする	A_1 から A_n までのいずれか(複数でもよい) の異常期間はすべて異常期間とする(すべて が正常な期間のみ正常期間)	A_1 から A_k まで同時に異常が現れ, A_{k+1} から A_n までは 正常であるとき,共通の異常期間を異常期間とする。
A	$A_1\cap\cdots\cap A_n$	$A_1 \cup \cdots \cup A_n$	$A_1 \cap \cdots \cap A_k \cap \overline{A}_{k+1} \cap \cdots \cap \overline{A}_n$
q ₀	$p_0 q_1 \cdots q_n + (1-p_0) s_1 \cdots s_n$	$1 - p_0 (1 - q_1) \cdots (1 - q_n)$ $- (1 - p_0) (1 - s_1) \cdots (1 - s_n)$	$p_0 q_1 \cdots q_k (1-q_{k+1}) \cdots (1-q_n) + (1-p_0) s_1$ $\cdots s_k (1-s_{k+1}) \cdots (1-s_n)$
p	$\frac{1}{1+\frac{(\frac{1}{p_1}-1)\cdots(\frac{1}{p_n}-1)}{(\frac{1}{p_0}-1)^{n-1}}}$	$\frac{1}{1 + \frac{1 - (1 - s_1) \cdots (1 - s_n)}{1 - (1 - q_1) \cdots (1 - q_n)} (\frac{1}{p_0} - 1)}$	$\frac{1}{1+\frac{(\frac{1}{p_1}-1)\cdots(\frac{1}{p_k}-1)(\frac{1}{r_{k+1}}-1)\cdots(\frac{1}{r_n}-1)}{(\frac{1}{p_0}-1)^{n-1}}}$
q	$q_1 \cdots q_n$	$1 - (1 - q_1) \cdots (1 - q_n)$	$q_{1}\cdotsq_{k}(1-q_{k+1}^{})\cdots(1-q_{n}^{})$
r	$\frac{1}{1+\frac{1-s_1\cdots s_n}{1-q_1\cdots q_n}(\frac{1}{p_0}-1)}$	$\frac{1}{1 + \frac{(\frac{1}{r_1} - 1) \cdots (\frac{1}{r_n} - 1)}{(\frac{1}{p_0} - 1)^{n-1}}}$	$\frac{1}{1 + \frac{1 - s_1 \cdots s_k (1 - s_{k+1}) \cdots (1 - s_n)}{1 - q_1 \cdots q_k (1 - q_{k+1}) \cdots (1 - q_n)} (\frac{1}{p_0} - 1)}$
5	s ₁ s _n	$1 - (1 - s_1) \cdots (1 - s_n)$	$s_1 \cdots s_k (1 - s_{k+1}) \cdots (1 - s_n)$