6-12 福井地震断層の位置と規模を定めるための探査 A prospecting to Determine Position and Magnitude of the Fukui Earthquake Fault

> 京大防災研究所 竹内文朗·古川信雄·春日 茂(当時) 平野憲雄·西上欽也·見野和夫 京大理学部 天池文男·川部喜朗 金沢大学理学部 河野芳輝 立命館大学理工学部 貞広太郎

Fumiaki TAKEUCHI, Nobuo HURUKAWA, Shigeru KASUGA (then), Norio HIRANO Kinya NISHIGAMI and Kazuo MINO Disaster Prevention Research Institute, Kyoto University Fumio AMAIKE and Yoshiaki KAWABE Faculty of Science, Kyoto University Yoshiteru KONO Faculty of Science, Kanazawa University Taro SADAHIRO Faculty of Science and Technology, Ritsumeikan University

福井地震断層は、1948年の福井地震(M = 7.3)¹⁾に際して動いたとされる活断層である が、福井平野の厚い堆積層の下にあるため、その位置、規模ともに正確な情報が少なかった。 そこで、物理探査の手法を用いて、これらの推定を試みた。既知の情報としては、福井地震の 際の地われの発生した位置と、それを境として、東側が西側に対して数10 cm隆起したことなど である²⁾。図1のFault と記したのが地表に見られた地割れをつないで表わしたものである。 今回の探査は同図のハッチ部分を主に行ない、探査の種類によっては、これを東西に延長した り、また、北側、南側にも別の測線を設けたりした。

探査の種目は, a)重力, b)全磁力, c)地震波, d) y 線, e)やや長周期の常時微動である。 福井地震は横ズレの卓越したものであったが,たてズレ成分も少しあり,もしこの型の地震 がくり返し発生していれば,地下に相当のくい違いをもつたてズレの断層が見出されるはずで ある。河野ら³⁾の重力の結果も,それを支持しているようである。更に Kono et al⁴⁾による ブーゲー異常のこの地域の大体のパターンは,福井地震時の水準結果とセンスに於いて一致し, 量的には,2桁ほど上まわっている。即ち,現在のブーゲー異常のパターンを,福井地震のく り返しで説明するとすれば,100回程度の回数が結論される。これに力を得て,図1のハッチ 部より広い範囲で,プロトン磁力計による磁力探査を行なった⁵⁾。図2の下段に,Granitic Layer とその上の基盤岩との形状のモデルを示した。これにより計算される全磁力のAnomalyと,測定値を図2の中段に示した。Base Rocks にK > 10⁻²程度の大きな値を仮定すれ

ば、大局的な一致がみられる。同じモデルによるブーゲー異常の計算値と、実測値を同図上段 に掲げる。ここでも、大局的な一致を示しているが、実測値は、そのカーブの中央あたりで、 非常な急勾配をしていることがわかる。これは,下段の図の Base Rocks とその上の堆積層と の境界の形を反映したものと見ることができ、ここではその一つの可能な解を、Tajima Riverの位置に 150m の東上りの構造として示した。以下の探査は、この境界面を探るものであ る。図3では、この段差による全磁力異常の、実測値との比較を行なった。ここに示した実測 値は,先の大局的な値を,もとの実測値からさし引いた残りの短波長成分で,浅いところの構 造を反映するものと考えている。問題の段差は,鉛直なズレと考えても,あるいは下段の MO DEL Ⅱのようなダラダラとした段と考えても、実測値によく似たパターンが得られる。以上、 重力,磁力探査により,地下100~300m付近に,100mをこえるくい違いの存在することが推 察されたが,更に分解能のすぐれた地震探査を図4の展開で実施した⁶⁾。震源にはエアガンを 用い微弱な信号をスタッキングによってS/N比のよい記録に変えて解析した。図5に一例を 示す。この図の中央部が、ちょうど、図2、3のモデルで段差を設けた位置にあたる。図5で 明白なように,西側(図の左側)へは Vp ≒ 2 km/ sec の初動がほぼ直線的に続くのに比べ, 東側(右側)には,200m付近までは同様の速度で,それ以遠は,Vp ≥ 4km / sec の速い速 度が見られるという違いがある。これは、Base Rocks からの屈折波の現れと考えることがで きる。図6のd)に、他のショットによる結果および、自然地震の走時も参考にした解折結果を 示す。同図 a) は,福井地震前後の水準変化²⁾であり, b) は市町村の1 / 2500 地形図から読 みとった水田の高さのプロットである。またc)は、ボーリング柱状図より求められた沖積層 の深さ⁷⁾である。いずれも、この地域に於いて、顕著な高さ方向の変化があることを示してい て、図のハッチで示した地われの発生した地域²⁾との対応もよい。以上をもって、SP2(Shof Point 2)の直下の段差もしくは、それを含む 1km ほどの巾の地域全体が、くり返す福井 地震の集積でできた断層(帯)であろうと推理する。また γ 線のシンチレーションサーベイメ ータによる y 線強度の分布⁸⁾も、問題のあたりから東側にかけて急な減少を示し、上記の事実 と何らかの対応をするものと思われる。(図7)次に、このような堆積層とその基盤との境界 のくい違いがあれば、堆積層の厚さに比例した周期の常時微動が卓越するものと考え、観測を 行なった⁹⁾。測点を図8に示す。地震計は1秒のVで、コンデンサーによる周期のばしを施し、 3,4秒の長い波動まで観測できるようにした。結果は、場所による周期の変化は顕著でなく、 むしろ,その振巾が大きく変化するようであった。図9に,4秒と2秒について,各点でのフ ーリエスペクトルの振巾を plot した。K – Line の測定は J – Line の翌日のものである。これ でわかることはK-6とJ-6の間、すなわち、やはりTajima Riverの付近で振巾が急変 することで、地下構造の反映であると考えたい。

以上,場所的には Tajima River の近くに,規模 100m 以上の段差があることがわかった。 この段差を仮に福井地震と同じメカニズムの地震だけで生じさせるには,100 回以上のくり返 し発生が必要である。見積りによっては,この回数は 200 回としても不自然ではない。そして, これらの地震群が,仮にこの 100 万年間に起こったとすれば,くり返し周期は 5000 年~10000 年と考えることができる。この断層の南北方向(走行方向)の規模は,別の測線による重力, 全磁力の測定から,地われの続いていた範囲のうち,約 10km については,ほぼ確かめられた が,さらに長いものかどうかについては,検討していない。

参考文献

- 1) 宇佐美龍夫:資料日本被害地震総覧, 東海大学出版会(1975)
- 2) Edited by H.TSUYA: THE FUKUI EARTHQUAKE OF JUNE 28, 1948 (1950)
- 3) 河野芳輝, 角南基亮, 藤井美智子:福井平野における重力異常と福井地震災害との関係, 地震 II, No. 34, pp377 - 383, (1981)
- 4) Yoshiteru KONO, Takeshi HIBI, Masayuki KUBO, Osamu MICHIGAMI,
 Kyoji SHIBUYA, Motoaki SUNAMI, Keijiro SUZUKI and Nobuhiro FURU
 SE: Gravity Anomaly over the Northern Part of the Central Japan (1),
 Science Reports of Kanazawa University, Vol 27, No 1, (1982)
- 5) 竹内文朗, 平野憲雄, 古川信雄:福井地震断層探査 その1 全磁力, 地震学会講演予稿 集 No.1(1983)
- 6) 天池文男,春日 茂,古川信雄,竹内文朗,平野憲雄,川部喜朗,西上欽也:福井地震断 層探査 -その4- 地震探査,地震学会講演予稿集 No.1(1983)
- 7) 北陸農政局計画部:福井県の水理地質と地下水(1977)
- 8) 貞広太郎,見野和夫:福井地震断層探査 その2 y 線測定,地震学会講演予稿集,No.1 (1983)
- 9) 古川信雄,春日 茂,竹内文朗,天池文男,平野憲雄:福井地震断層探査 その3 やや 長周期微動,地震学会講演予稿集,No.1(1983)

Fig. 1 The Fukui earthquake fault and area of prospecting (shadow zone).

第2図 東西測線に沿うブーゲ異常(上),全磁力異常(中),地殻上部構造(下)

Fig. 2 The Bouguer anomaly (upper), magnetic total force (middle) and upper crustal structure (lower), in East (right) - West (left) direction.

SP1 ~ SP4:エアガンによるショットポイント

L-L':同上観測線, C-1~8:微動観測点

Fig. 4 Seismic prospecting by air-gun, and microtremor observation. SP1 - SP4 : shot points of air-gun.

- L L': observation line for the air-gun prospecting.
- C-1 8 : observation points for microtremor.

Fig. 5 An example of seismograms by the air-gun shooting. The left : L, the right : L'.

b) Topography,

c) Depths of alluvium,

d) Structure of basement rock. Squares: Positions of the basement rock estimated by observation of an earthquake. Line segments: Those estimated by air-gun shooting.

The abscissa shows East (right) - West (left) direciton.

