11-2 ユーラシア南東部プレート境界付近の長期地震活動と 2008年5月12日中国四川省の地震 Mw7.9

Long-term seismic activity along the southeastern Eurasian plate boundaries and the May 12, 2008 Sichuan earthquake Mw7.9

防災科学技術研究所

National Research Institute for Earth Science and Disaster Prevention

2008年5月12日の中国四川省の地震 Mw7.9と関係して、ユーラシア南東部プレート境界 付近の長期地震活動、及び2004年12月16日スマトラ沖地震 Mw9.3の前の広域地震活動の 特徴について報告する.

第1図は1900年以降の世界の M≧7.5 の地震の震央の緯度と時間の関係を示している.最 近では、1990年代半ば頃から広範囲に活発化の傾向がみられ、特に低緯度地帯の活動が目立 っている.第2図は、プレート境界に沿う3つの領域A、B、CのM≧7.5の地震について、 1900年~2008年5月20日の期間の M・t 図である.2008年5月12日の中国四川省の地震 Mw7.9は、領域Cのインド・ヒマラヤ・チベット衝突帯の東端に位置する.この領域Cでは 活動期と静穏期の違いが著しく、1958年~1996年の39年間にM≧7.5は発生していないが、 1997年~2008年5月現在の約11年間に、今回の中国四川省の地震を含めて5個が発生した. 領域Bのスマトラ・アンダマン沈み込み帯の2004年12月16日スマトラ沖地震 Mw9.3は、 1900年以降の Mw≧9の5個の中で唯一インド洋に最近発生した(第1図).この M・t 図の 1980年以降に着目すると、全体に活動域のA→B→Cへの移動傾向がみられる.

第3図は1900年以降の領域A,B,CのMの度数分布を示す.この間の各領域の最大地震M1のうち,領域Bの2004年スマトラ沖地震Mw9.3が飛びぬけて大きいこと,M \geq 7の度数分布から求めたb値は,領域BとCはほぼ同じ値であるが,度数分布はMの大きな方で領域Bは凹型,領域Cは凸型を示すことが特徴的である.

第4図は、2004年スマトラ沖地震の震源を中心とする半径 R=3000kmの領域、及びインド・ ヒマラヤプレート境界の中央部を中心とする半径 R=2000kmの領域について、1977年以降の M \geq 6.5 の M-t 図、及び M の度数分布の時間変化を示している. 2004年スマトラ沖地震の周 辺 R=3000kmの領域は、大地震の M とその臨界域の関係 Dを参照して採ったものである. こ の R \leq 3000kmの領域の M-t 図から、2004年スマトラ沖地震の前、時間とともに周辺の地震 活動が活発化し、かつ M が大きくなる傾向が明瞭である. M の度数分布でみると、時間的に M 7 クラスの度数が増し、その分布形は、凸型からより M の大きな範囲まで G-R の関係が成 り立つ直線形へ変化している(第4 図左下の、一〇一の記号の分布形から、直前までの期間の 一〇一の記号の分布形への変化).

一方,第4図のインド・ヒマラヤプレート境界の中央部を中心とする半径 2000km の領域 は,概ね第2図の領域Cに対応し,またヒマラヤ衝突帯のサイスミシティギャップ²⁾付近を 中心に採った.このR≦2000kmの領域のM・t図とMの度数分布の時間変化は,上記スマト ラ沖地震を中心とするR≦3000kmのスマトラ沖地震前のそれらの特徴と似たような特徴を持 つ.すなわち,Mが時間的に大きくなり,Mのより大きな範囲までG-R式が成り立つ変化傾 向にある(第4図右下の一〇一の分布形から,一□一の分布形への変化).しかし,今回の2008 年5月12日のMw7.9は,1977年以降のこのR≦2000kmの領域で最大の地震であるが,こ の地震を含めMの度数分布はMの大きい方で依然として凸型である(第4図右下一▽一の分 布形).

第5回は,第4回の M-t 図から,いわゆる累積ベニオフ歪を求め,その加速傾向に time-to-failure モデル^{3),4)}を適用した例を示している.(a)は,第4回の R \leq 3000km の領域 の2004年スマトラ沖地震 Mw9.3の前までの期間,(b)と(c)は,第4回の R \leq 2000km の領域 の2007年9月末まで,及び2008年5月20日までの期間の地震についてである. Time-to-failure モデルとして,第5回左上の二つの式のように,(1)時間のべき乗則,(2)時間 のべき乗則+対数周期性,の関数形を各々適用し,非線形最小二乗法で最終破壊時間 tf 及びそ の他のパラメータを求めた.(2)式はパラメータ数が多いため,特に初期値に依存して最終解は 必ずしも安定でない. 第5図には, パラメータの妥当な範囲で観測値の分布傾向を良く表す結果の例を示した.(a)のスマトラ沖地震前の累積ベニオフ歪に対して,(1),(2)のtfは,各々2006.8 年及び 2005.1 年が得られた.(2)による tf=2005.1 年は実際の発生時間 2004 年 12 月 26 日に 近い値を示している.

一方, ヒマラヤ中央部を中心とする R≦2000km の領域では, (b)の 2007 年 9 月末までの観 測値に対して, (1)と(2)の tf は, 各々2010.6 年, 2008.7 年で, (2)の tf=2008.7 年は今回の 2008 年 5 月 12 日の四川省の地震に近い値である.これに対し, その後発生した 2 個の地震(2008 年 3 月 21 日中国新疆ウイグル自治区 Mw7.1 及び今回の地震 5 月 12 日 Mw7.9)を含む 2008 年 5 月 20 日までの累積ベニオフ歪は, (c)のように依然加速傾向があるようにみえる.この累 積歪に対する(1), (2)の tf として, 各々2016.1 年, 2013.8 年が得られた.

以上,第2図~第5図の領域 C,及びヒマラヤ中央部を中心とする広範囲(ここでは R≦2000km)の地震活動の特徴から、インド・ヒマラヤ・チベット衝突帯で加速的な活発化傾向がみられる.過去にも長大なプレート境界に沿う明瞭な活動期と静穏期の繰り返し、地震活動の移動が調査されている ^{5). 6), 7)}. これらの広域の地震活動の推移を注視し、定量的解析とモデルの適用、評価等が重要である.

(野口伸一)

参考文献

- 1) Bowman, D. D., G. Ouillon, C. G. Sammis, A. Sornette, D. Sornette, 1998. An observational test of the critical earthquake concept, J. Geophys. Res., 103, 24359-24372.
- 2) Bilham, R., N. Ambraseys, 2005. Apparent Himalayan slip deficit from the summation of seismic moments for Himalayan earthquakes, 1500-2000, Current Science, 88, 1658-1663.
- 3) Buffe, C. G., D. J. Varnes, 1993. Predictive modeling of the seismic cycle of the Greater San Francisco Bay region, J. Geophys. Res., 98(B6), 9871–9884.
- 4) Sornette, D., C. G. Sammis, 1995. Complex Critical Exponents from Renormalization Group Theory of Earthquakes: Implications for Earthquake Predictions, J. Phys. I France 5, 607-619.
- 5) Mogi, K., 1974. Active periods in the world's chief seismic belts, Tectonophysics, 22, 265-282.
- 6) Mogi, K., 1979. Global variation of seismic activity, Tectonophysics, 57, T43-T50.
- 7) 茂木清夫, 1981. 地震-その本性をさぐる, 東京大学出版会, 164pp.

- 第1図 1900年1月1日~2008年5月20の世界のM≥7.5の地震の緯度と時間の関係.2004 年12月26日のスマトラ沖地震 Mw9.3,2008年5月12日の中国四川省の地震 Mw7.9 の位置を図中に示す.
- Fig.1 Latitude-time distribution of large earthquakes with M \geq 7.5 for the time period 19000101-20080520. Arrows show the Sumatra earthquake of 26 December 2004 and the Sichuan earthquake of 12 May 2008, respectively.

M-t plot in regions A, B, and C with M≥7.5 and depth≤ 60 km during 1900/1/1-2008/5/20

- 第2図 ユーラシア南東部のプレート境界に沿う3つの領域A, B, C の M≥7.5 の M·t 図.
 期間は1900年~2008年5月20日.2008年5月12日の中国四川省の地震 Mw7.9
 は、領域 C の東端に位置する.領域 C では長期的な活動期と静穏期の繰り返しが著しい.最近では1997年以降5個の M≥7.5 が発生している.
- Fig.2 M-t plot of earthquakes with M≥7.5 in the regions A, B and C along the southeastern Eurasian plate boundaries for the time period 19000101-20080520. The 12 May 2008 Sichuan earthquake Mw7.9 locates in the eastern edge of region C. Long-term active and quiescent periodicity is remarkable in region C. Recent active period shows the occurrence of five events with M≥7.5 since 1997 including the 2008 Sichuan earthquake.

Frequency-magnitude relations in regions A, B, C 19000101-20080520 M 26.8 dep <60 km

- 第3 図 第2 図の領域A, B, C のM≥6.8 の地震の度数分布. 期間は1900 年~2008 年5 月
 20 日. M1 は各領域の最大地震のマグニチュード, b 値はM≥7 の分布から求めた値を示す.
- Fig.3 Frequency-magnitude distribution of earthquakes with M>6.8 in regions A, B and C for the period 19000101-20080520. M1 is the maximum magnitude in each area. b-values are calculated for earthquakes with M>7.0.

- 第4図 2004年スマトラ沖地震の震源を中心とする半径 R=3000kmの領域,及びインド・ヒ マラヤプレート境界の中央部を中心とする半径 R=2000kmの領域の M・t 図,及び M の度数分布の時間変化. 1977 年以降の M ≥ 6.5 の地震について示す.スマトラ沖地 震周辺の R ≤ 3000km の地震の M・t 図と M の度数分布は,2004年スマトラ沖地震の 前,大きな地震が時間的に増し, M の分布形が凸型から G-R の関係が成り立つ直線 形への変化を示している.インド・ヒマラヤプレート境界の中央部を中心とする R ≤ 2000km の地震の M・t 図と M の度数分布にも,2004年スマトラ沖地震前と似た特徴 がみられる.
- Fig.4 M-t plot and frequency-magnitude (F-M) distribution of earthquakes in the circular region radius R=3000 km centered at the 20004 Sumatra earthquake, and in the circular region radius R=2000 km centered at the central Himalaya collision zone, respectively. Earthquakes since 1977 and M≥6.5 are plotted. M-t plot and F-M distribution before the 20004 Sumatra earthquake show the temporal increase of large earthquakes and the temporal change of F-M distribution from convex to rather straight form fitting for the G-R relation in larger M range. M-t plot and F-M distribution of earthquakes in the circular region radius R=2000 km centered at the central Himalaya collision zone also show a tendency resembling the activity before the 2004 Sumatra earthquake.

- 第5図 2004年スマトラ沖地震の震源を中心とする半径 R=3000kmの領域,及びインド・ヒマラヤプレート境界の中央部を中心とする半径 R=2000kmの領域の M・t 図(第4図)から,累積ベニオフ歪を求め,その加速傾向にふたつの time-to-failure モデル^{3),4}を適用した例.非線形最小二乗法で最終破壊時間 tf 及びその他のパラメータを求めた.
 (a)は,第4図の R≦3000km の領域の 2004年スマトラ沖地震 Mw9.3 の前までの期間,(b)と(c)は,第4図の R≦2000km の領域の 2007年9月末まで,及び 2008年5月20日までの期間.(a)の 2004年12月26日のスマトラ沖地震前までのデータに(2)式を適用すると,tf=2005.1年となり実際の発生時間に近い値が得られた.
- Fig.5 Cumulative Benioff strain release normalized for earthquakes in the two circular areas shown in Fig. 4. Two time-to-failure models are applied^{3),4)}. (a) Cumulative Benioff strain and the calculated curves of two time-to-failure functions, by applying a non-linear least-square method, respectively, for earthquakes before the 2004 Sumatra earthquake in the circular region radius R=3000 km. (b), (c) Cumulative Benioff strain and the calculated curves for earthquakes in the circular region radius R=2000 km centered at the central Himalaya collision zone for the period 19770101-20070930 and 19770101-20080520, respectively. The final rupture time tf calculated from formula (2) applied to the cumulative Benioff strain before the 26 December 2004 Sumatra earthquake in (b) is tf=2005.1 which is rather close to the actual occurrence time of the 2004 Sumatra event.