11-4 その他の地域の地殻変動

Crustal Movements in Other Regions

国土地理院

Geographical Survey Institute

[連続GPS 硫黄島]

第1図は、東京都小笠原村硫黄島(いおうとう)のGPS連続観測結果である。上段左・右に最近1ヶ月間の水平・上下変動ベクトルが示されている。下段は、父島を基準とした(1)硫黄島1・(2)硫黄島2・(3)M硫黄島の最近約2年間の3成分時系列グラフである。最下段の比高グラフに注目すると、硫黄島南西端の(2)硫黄島2は上下変位が小さいのに対し、(1)硫黄島1はこれまで大きく隆起してきた。硫黄島1は、2006年8月上旬頃に急速な隆起に転じ、2006年12月下旬の隆起速度は最大25cm/月にもなったが、2007年1月以降約1年間は10cm/月以下で推移した。2008年2月下旬から、隆起速度が少し加速し、ほぼ10cm/月の隆起速度になった。その後、2008年8月頃から隆起速度が時々鈍化し、10月頃からは停滞している。

GPS機動連続観測点「M硫黄島」は、硫黄島島内の地殻変動監視を強化するために2007年4月17日に設置された. M硫黄島は、ほぼ南北にはしる阿蘇台断層の約150m東側に位置し、隆起が一時顕著だったが2008年8月頃から隆起速度が時々鈍化し、10月頃からは停滞しているという点で、変動の傾向は比較的硫黄島1に似ている.

硫黄島2は、南向きの変動が継続していたが、2008年2月下旬から、西向き成分が増加し、 一時南西向きの変動となった、その後、南向きの変動は継続している.

「繰り返しGPS 硫黄島]

第2~6図は,年2~4回の頻度で行っている東京都小笠原村硫黄島(いおうとう)のGPS繰り返し観測結果である.15~20点のGPS点での水平,上下変動の空間分布がわかる.最近の結果 (6)~(9) からは,現地調査で指摘されていた阿蘇台断層での東側隆起,右横ずれが確認できる.さらに,開口のセンスの変動が見られる.(1)~(9) の座標値計算の際の既知点座標値は,F2解である一方,(10) の既知点座標値はF3解である.過去に遡ってF3解に統一して提示するよう作業を進めている.

第5図(11)の最近の変動は、小さめである.

第6図(13)は、監獄岩の初めての観測結果である. 釜岩より小さめの西北西向き5.5cmの変動が観測された. この期間が1年間なので、比較用に(12)の図を追加した.

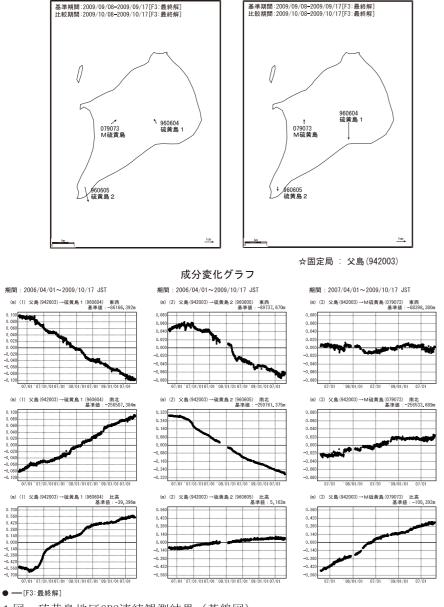
「合成開口レーダー (SAR) 硫黄島]

第7図は、硫黄島について「だいち」(ALOS)のPALSARデータの干渉解析を実施した結果である. 1,2段目のペアは南行軌道、3段目のペアは北行軌道からのオフナディア角34.3°での観測データを用いている. 北行軌道では衛星は西側上空から東北東方向へ観測しており、南行軌道では東側上空から西北西方向に地表を観測している. 位相の減少は衛星に近づく向きの変位に対応しており、北行軌道では隆起、西南西への変位が卓越、南行軌道では隆起、東南東への変位が卓越することを示す. 位相の増加はそれぞれその逆となる.

阿蘇台断層の変動はほとんど見られない.元山付近は(周囲と比べて相対的に)沈降していると考えられる.

なお、「だいち」のPALSARデータに関する所有権は経済産業省およびJAXAにある.本解析で用いた「だいち」のPALSARデータは、国土地理院とJAXAとの間の協定に基づいて入手したものである.関係各位に謝意を表する.

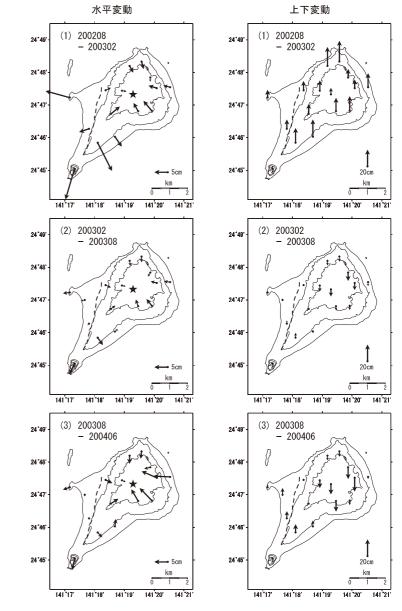
参考文献


- 1) 国土地理院, 2003, その他の地域の地殻変動, 地震予知連絡会会報, 70, 170-175.
- 2) 国土地理院, 2005, その他の地域の地殻変動, 地震予知連絡会会報, 73, 616-620.
- 3) 国土地理院、2007、その他の地域の地殻変動、地震予知連絡会会報、77、460-470.
- 4) Fujiwara et al., 2000, 2.5-D surface deformation of M6.1 earthquake near Mt Iwate detected by SAR interferometry, Geophys. Res. Lett., 27, 2049-2052.
- 5) 貝塚ほか,1983, 硫黄島の海成段丘・活断層と変動史,小笠原研究,9,13-45,東京都立大学小笠原研究委員会.
- 6) 国土地理院, 2007, その他の地域の地殻変動, 地震予知連絡会会報, 78, 575-581.
- 7) 国土地理院, 2008, その他の地域の地殻変動, 地震予知連絡会会報, 79, 617-622.
- 8) 国土地理院, 2008, その他の地域の地殻変動, 地震予知連絡会会報, 80, 521-525.
- 9) 国土地理院, 2009, その他の地域の地殻変動, 地震予知連絡会会報, 81, 574-578.
- 10) 国土地理院, 2009, その他の地域の地殻変動, 地震予知連絡会会報, 82, 432-437.

硫黄島GPS連続観測結果 最終

地殼変動 (上下)

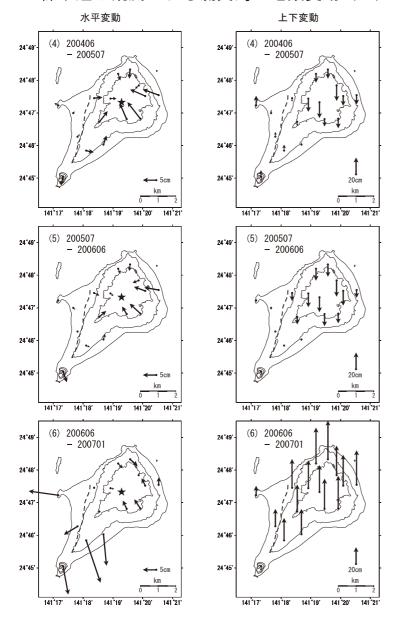
「硫黄島1」、「M硫黄島」では、隆起の傾向が続いていたが、現在は停滞している。 また「M硫黄島」では、9月末頃から北東向きの地殻変動が見られる。「硫黄島2」では南向きの地殻変動が継続している。


地殼変動 (水平)

第1図 硫黄島地区GPS連続観測結果(基線図)

Fig. 1 Results of continuous GPS measurements in Io-to island (Iwo-Jima) (baseline map).

GPS繰り返し観測による硫黄島の地殻変動(1)

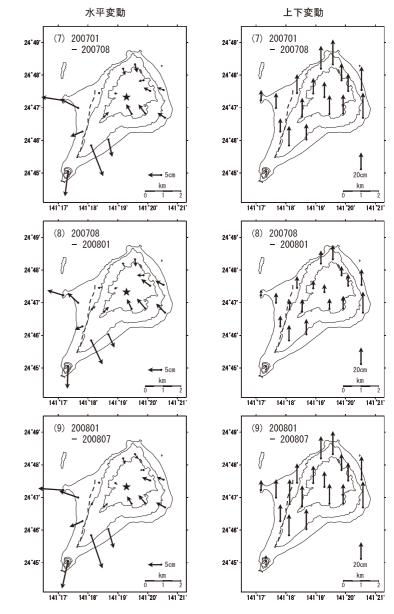


- 水平は★(硫黄ヶ丘測点:元山)を固定とした変動図,上下は各観測で算出した楕円体高より求めた変動図.
- ・破線は現地調査(2007年1月)および写真判読を元にした「阿蘇台断層」の位置.
- ・ 比較期間は(1),(2),(6)~(11)は約半年,(3)~(5),(12),(13)は約1年.
- · (1)~(3): 電子基準点はF2 解を使用.

第2図 GPS繰り返し観測による硫黄島の地殻変動(1)

Fig. 2 Crustal deformation of Io-to (Iwo-Jima) from GPS campaign (1/5).

GPS繰り返し観測による硫黄島の地殻変動(2)

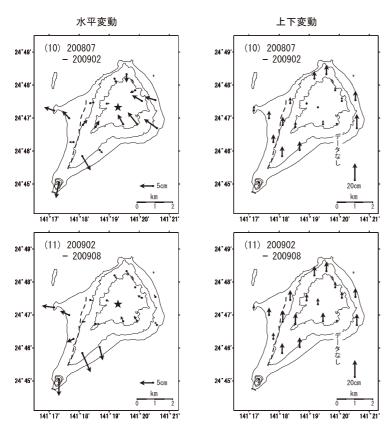


- ・水平は★(硫黄ヶ丘測点:元山)を固定とした変動図,上下は各観測で算出した楕円体高より求めた変動図.
- ・破線は現地調査(2007年1月)および写真判読を元にした「阿蘇台断層」の位置.
- ・比較期間は(1),(2),(6)~(11)は約半年,(3)~(5),(12),(13)は約1年.
- · (4)~(6): 電子基準点は F2 解を使用.

第3図 GPS繰り返し観測による硫黄島の地殻変動(2)

Fig. 3 Crustal deformation of Io-to (Iwo-Jima) from GPS campaign (2/5).

GPS繰り返し観測による硫黄島の地殻変動(3)

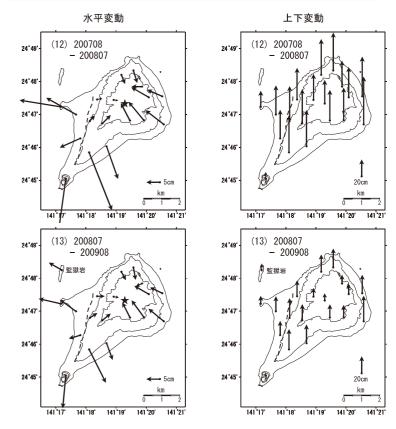

- ・水平は★(硫黄ヶ丘測点:元山)を固定とした変動図、上下は各観測で算出した楕円体高より求めた変動図。
- ・破線は現地調査(2007年1月)および写真判読を元にした「阿蘇台断層」の位置。
- 比較期間は(1)(2)(6)~(11)は約半年(3)~(5)(12)(13)は約1年
- (7)~(9):電子基準点はF2解を使用。

第4図 GPS繰り返し観測による硫黄島の地殻変動 (3)

Fig. 4 Crustal deformation of Io-to (Iwo-Jima) from GPS campaign (3/5).

GPS 繰り返し観測による硫黄島の地殻変動(4)

最近の変動は小さめである.

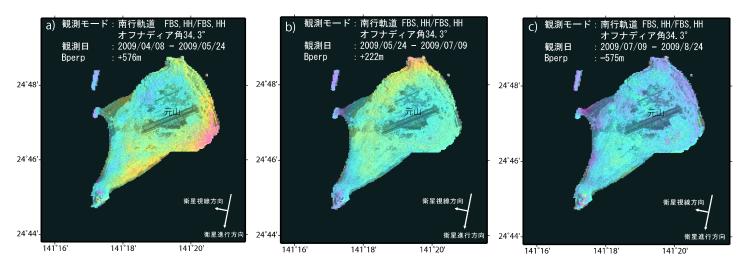

- 水平は★ (硫黄ヶ丘測点:元山) を固定とした変動図, 上下は各観測で算出した楕円体高より求めた変動図.
- 破線は現地調査(2007年1月)および写真判読を元にした「阿蘇台断層」の位置
- 比較期間は(1),(2),~(6),(11)は約半年,(3)~(5),(12),(13)は約1年
- (10)~(11): 電子基準点はF3 解を使用.

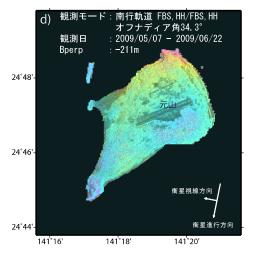
第5図 GPS繰り返し観測による硫黄島の地殻変動(4)

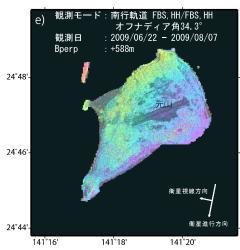
Fig. 5 Crustal deformation of Io-to (Iwo-Jima) from GPS campaign (4/5).

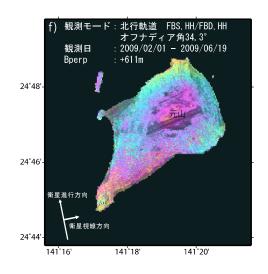
GPS繰り返し観測による硫黄島の地殻変動(5)

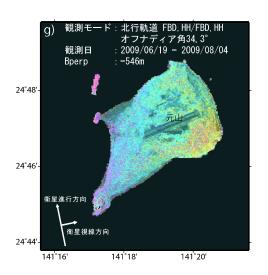
監獄岩の初めての地殻変動観測結果(13)で、5.5cmの西北西向きの変動が観測された.




- ・水平は★(硫黄ヶ丘測点:元山)を固定とした変動図、上下は各観測で算出した楕円体高より求めた変動図。
- ・破線は現地調査(2007年1月)および写真判読を元にした「阿蘇台断層」の位置.
- ・比較期間は(1),(2),(6)~(11)は約半年,(3)~(5),(12),(13)は約1年.
- · (12):電子基準点はF2解を使用 (13):電子基準点はF3解を使用.
- ・ (13): 監獄岩測点は 2008 年7月と 2009 年8月に観測を実施


第6図 GPS繰り返し観測による硫黄島の地殻変動(5)


Fig. 6 Crustal deformation of Io-to (Iwo-Jima) from GPS campaign (5/5).


「だいち」PALSARによる硫黄島の解析結果について

近づく 遠ざかる 遠ざかる 衛星-地表間の距離の変化

判読》

- ・元山付近で、ほぼ全ての時期において相対的に衛星から遠ざかる向きの変位が見られる.
- ・北部や東部では、変位が明瞭に見られる時期と見られない時期がある.

Analysis by GSI from ALOS raw data of JAXA, METI

第7図 ALOS/PALSARの干渉データ解析により得られた硫黄島の変位量分布

Fig. 7 Maps of line of sight (LOS) displacement of the Io-to island (Iwo-Jima) detected by InSAR analysis of ALOS PALSAR data.